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Chapter 1

Introduction

1.1 Problem Formulation and Related Work

Suppose that we are given a measure-preserving dynamical system (𝑋, 𝐹, 𝜇), i.e. we have a
compact subspace 𝑋 ⊆ ℝ𝑑, a continuous function 𝐹 ∶ 𝑋 → 𝑋 and a 𝐹-invariant probability
measure 𝜇 ∈ 𝒫(𝑋), which means that 𝐹♯𝜇 = 𝜇. Examples of such systems can be found
in ergodic theory as well as in classical mechanics and thermodynamics. All measure-
preserving systems are conservative systems, i.e. they satisfy Poincaré recurrence theorem
[Poi90]. One very common and important theme in the study of dynamical systems is the
approximation of the behavior of the system. This is typically done by direct simulation
and this method can be very useful when a specific orbit has to be approximated for a
finite period of time. However, if one is interested in the long term behavior or if the
underlying system exhibits complicated dynamics then the information derived from one
single trajectory is not always satisfying. In this work we want to explore other ways of
approximating dynamical systems. The question that we are going to mainly deal with in
this thesis can be vaguely stated as follows:

Problem. Given a (measure preserving) dynamical system (𝑋, 𝐹, 𝜇), how can we find a stochas-
tic map 𝐹𝑁 defined on a finite subspace 𝑋𝑁 ⊆ 𝑋 such that 𝐹𝑁 extracts the most important
dynamical features of the system?

One approach to the above problem is known as Ulam’s method, cf. [Ula60] and [Hsu81].
In this method, we consider a reference measure 𝑚 and a 𝑚-essentially disjoint covering
𝐶1, … , 𝐶𝑁 of the support of 𝜇 (the 𝐹-invariant measure of the system). Then we can write 𝜇
in the following form

𝜇(𝐴) =
𝑁

∑
𝑖=1

𝜋𝑖
𝑚(𝐶𝑖 ∩ 𝐴)

𝑚(𝐶𝑖)
,

for some coefficients 𝜋𝑖 ≥ 0. Since 𝐹♯𝜇 = 𝜇 we get

𝜋𝑖 = 𝜇(𝐶𝑖) = 𝐹♯𝜇(𝐶𝑖) =
𝑁

∑
𝑘=1

𝑃𝑖𝑘𝜋𝑘,

where 𝑃𝑖𝑘 = 𝑚(𝐶𝑘∩𝐹−1(𝐶𝑖))
𝑚(𝐶𝑘) , or equivalently 𝑃𝜋 = 𝜋 with 𝜋 = (𝜋1, … , 𝜋𝑁) and 𝑃 is the

matrix with entries 𝑃𝑖𝑘. This means that the coefficients 𝜋𝑖 are the stationary distribution
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2 Chapter 1. Introduction

that corresponds to the Markov matrix 𝑃. Hence we can choose the stochastic map 𝐹𝑁

to be defined by the Markov matrix 𝑃. In this way, the map 𝐹𝑁 captures the tranfer of
mass between the covering sets 𝐶𝑖, i.e. the (𝑖, 𝑗) entry of 𝐹𝑁 is the probability of moving
from subset 𝐶𝑗 to subset 𝐶𝑖. One downside of this method is that it can be quite inefficient
numerically, especially on high dimensions, as it requires the computation of the volume
𝑚(𝐶𝑘 ∩ 𝐹−1(𝐶𝑖)).

A new and modern approach was presented in [JMS22] using entropic optimal transport.
In this paper, in order to capture the dynamics of the dynamical system one considers the
transfer operator 𝑇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) given by 𝑇ℎ = d𝐹♯(ℎ𝜇)

d𝜇 which encodes all the dynamic
information of the system. Then after a small perturbation of the original deterministic
system we can get a regularized tranfer operator 𝑇𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇). According to [DJ99],
the spectrum of the operator 𝑇𝜀 can reveal the most essential dynamical features of the
system. For example, if 𝐹 decomposes the space 𝑋 into 𝑘 almost invariant sets, then the
spectrum of 𝑇𝜀 contains 𝑘 real eigenvalues close to 1. Similarly if 𝐹 exhibits a 𝑛-cycle then
the spectrum of 𝑇𝜀 is close to the 𝑛-th roots of unity.

More specifically, in [JMS22] the “blurring” 𝑇𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), of the map 𝑇 is constructed
by composing 𝑇 with a tranfer operator induced by the optimal 𝜀-entropic transport plan
between 𝜇 and 𝜇. The smoothed operator 𝑇𝜀 is called an entropic transfer operator. With this
regularization, it can be proved that 𝑇𝜀 is compact. Now we assume a weak approximation
𝜇𝑁 of the 𝐹-invariant measure 𝜇 and we repeat the aforementioned construction, i.e. we
construct approximating entropic tranfer operators 𝑇𝑁,𝜀 ∶ 𝐿2(𝜇𝑁) → 𝐿2(𝜇𝑁) from 𝜇𝑁. With
this setup it can be proved that (an extension of) 𝑇𝑁,𝜀 converges to 𝑇𝜀 in the operator
norm (Theorem 4.1.1) and as a result (since 𝑇𝜀 is compact) we also get convergence of the
spectrum of 𝑇𝑁,𝜀 to the spectrum of 𝑇𝜀 (Corollary 4.1.3). This approach has the benefit that
that it can be solved numerically very efficiently, using the Sinkhorn algorithm (Section 2.3.1)
and moreover it is more robust since it poses no assumption on the approximation 𝜇𝑁 → 𝜇.
In addition, by tuning 𝜀 (the regularization parameter) we can dictate the blurring in order
to focus on specific dynamical features on certain scale lengths.

Both of the above proposals make the assumption that 𝐹 is a deterministic map. In this
thesis our main goal is to study the case where the map 𝐹 is not deterministic but it is a
stochastic map. If we follow exactly the same route as in [JMS22] then the best we can
have is convergence of the operators 𝑇𝑁,𝜀 to 𝑇𝜀 in the 𝐿2 norm (Theorem 4.2.3). But this is
not enough to give us convergence of the spectra. We will present an approach (Chapter 5)
where we compose the transfer operator 𝑇 with two optimal entropic transport plans. This
extra regularization is enough to give us convergence in the operator norm (Theorem 5.5.1)
and thus convergence of the spectra (Corollary 5.5.3).

1.2 Contributions

The main contributions of this thesis are the following:

1. We formally present the theory of tranfer maps induced by general transport plans and
we show how this construction generalizes the classical definition of transfer operators
of dynamical systems. This work is built upon [JMS22, Section 4.1].

2. We formalize the stochastic setup of the above problem and we show that the direct
generalization of the results in [JMS22] only gives us convergence in the 𝐿2 norm.
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3. We modify the ideas in [JMS22] by considering a double smoothing via entropic
optimal transport. We formally present this theory and in the end we prove that using
this construction we get convergence in the operator norm even in the stochastic case.
We also numerically compare the spectra of the single smoothed operator with the
double smoothed operator.

4. Finally we study the convergence rate of the kernels of the operators 𝑇𝑁,𝜀 and 𝑇𝜀.
While this is still work in progress, we give some preliminary results. Moreover, we
present numerical expiriments regarding the convergence rate of the eigenvalues of
the operators 𝑇𝑁,𝜀 and 𝑇𝜀.

1.3 Structure of the thesis

Chapter 2: Optimal Transport. In this chapter we give a brief overview of the basic theory
of Optimal Transport. We start by giving the definition of optimal transport according to
Monge and Kantorovich. Then we state the dual problem and we give the definition of the
Wasserstein distance. Moreover, we introduce the Entropic Optimal Transport and we also
study the discrete case. We finish the chapter with the Sinkhorn Algorithm.

Chapter 3: Transfer operators induced by a transport plan. In this chapter we present a
new construction of tranfer operators. We formally define it and we prove some fundamental
results. Furthermore, we study this construction in the discrete case and in the end we
compare this new construction of transfer operators with the classical one.

Chapter 4: Entropic Transfer Operators. In this chapter we start by recalling the con-
structions and results of the entropic transfer operators from [JMS22] for the deterministic
case. Then we formally introduce the stochastic case and we try to prove the corresponding
results presented in the deterministic case. In the end we prove that following the ideas in
[JMS22] in this new setting can only go as far as proving convergence in the 𝐿2 norm.

Chapter 5: Double entropic regularization. In this chapter we present the theory of
double entropic regularization of the tranfer operator. With this new construction we are
able to prove convergence in the operator norm and as a result convergence of the spectra.
In the end we give a numerical comparison of the spectrum of the single smoothing versus
the spectrum of the double smoothing.

Chapter 6: Convergence Rates. In this chapter we present some recent results about
the convergence rates of the regularized and unregularized Optimal Transport. Using
these results we establish a convergence rate about the kernels 𝑡𝑁,𝜀 and 𝑡𝜀 of the operators
𝑇𝑁,𝜀 and 𝑇𝜀, respectively. We finish this chapter with a numerical experiment about the
convergence rates of the spectra of the operators 𝑇̂𝑁,𝜀 and 𝑇𝜀.

Appendix A: Some Mathematical Background. In this chapter we give a brief overview of
the basic results about the pushforward of measures, the disintegration theorem and the
modulus of continuity. We use many of these results repeatedly in the main chapters of the
thesis.



4 Chapter 1. Introduction

Notation and general assumptions

Throughout this thesis we make the following assumptions and we use the following notation
unless it is specified otherwise.

• By ℝ≥0 we denote the set of non negative real numbers.

• All metric spaces are separable metric spaces.

• All metric spaces are considered as measurable spaces via the Borel 𝜎-algebra.

• For a metric space 𝑋, let 𝐶(𝑋) denote the space of continuous real valued functions
over 𝑋, let 𝐶𝑏(𝑋) denote the space of bounded continuous real valued functions over
𝑋 and let 𝐶𝑠(𝑋) denote the space of 𝑠-continuously differentiable real valued functions
over 𝑋.

• For a metric space 𝑋, let ℳ(𝑋) denote the space of signed Radon measures over 𝑋,
let ℳ+(𝑋) denote the space of non-negative Radon measures over 𝑋 and let 𝒫(𝑋)
denote the space of probability measures over 𝑋.

• For a metric space 𝑋, a measure 𝜇 ∈ ℳ(𝑋) and a measurable function ℎ ∶ 𝑋 → ℝ,
define the measure ℎ𝜇 ∈ ℳ(𝑋) by

(ℎ𝜇)(𝐴) = ∫
𝐴

ℎ(𝑥)d𝜇(𝑥),

for any 𝐴 ∈ ℬ(𝑋).

• Let 𝑋 be a metric space and let 𝑥 ∈ 𝑋. The Dirac measure for the point 𝑥 is defines by
𝛿𝑥 ∈ 𝒫(𝑋)

𝛿𝑥(𝐴) =
⎧{
⎨{⎩

1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴,

for all 𝐴 ∈ ℬ(𝑋).

• We use the symbol |𝑥| to denote the euclidean norm of a vector 𝑥 ∈ ℝ𝑑 and the symbol
‖𝑓 ‖∞ to denote the supremum norm of a function 𝑓 ∶ 𝑋 → ℝ. Moreover we use the
symbol ‖𝜇‖𝑇𝑉 to denote the total variation distance of a measure 𝜇.



Chapter 2

Optimal Transport

In this chapter we are going to briefly review some basic results of the theory of mathematical
and computational optimal transport. We are going to use some of these results many times
later. Extensive studies in the mathematical theory of optimal transport can be found in
[AGS05], [San15], [Vil09] and [Vil21]. The main reference for the computational aspect of
optimal transport is [PC19].

2.1 Basic Definitions

The main goal of Optimal Transport (OT) is to find the best possible way of moving a
mass distribution into another. The standard example for this is to consider the following:
Suppose that we have a pile of sand of some shape and we want to move it into a hole of
a different shape. What is the most efficient way to do it? More formally, let 𝜇 ∈ 𝒫(𝑋)
(the sand) and 𝜈 ∈ 𝒫(𝑌) (the hole) be probability measures and let 𝑐 ∶ 𝑋 × 𝑌 → ℝ be a
cost function which represent the cost (the effort) 𝑐(𝑥, 𝑦) of moving the sand from the point
𝑥 ∈ 𝑋 into the point 𝑦 ∈ 𝑌. The objective is to find an optimal map Φ ∶ 𝑋 → 𝑌 of moving
the sand to the hole (i.e. we send the sand from point 𝑥 into the point Φ(𝑥); this means that
Φ♯𝜇 = 𝜈) such that the total cost is as low as possible. Mathematically, this problem was
first introduced by Gaspard Monge (1746-1818) as presented in the following definition.

Definition 2.1.1 (Monge formulation of OT, [Mon81]). Let 𝑋, 𝑌 be metric spaces and
let probability measures 𝜇 ∈ 𝒫(𝑋) and 𝜈 ∈ 𝒫(𝑌). Let 𝑐 ∶ 𝑋 × 𝑌 → [0, +∞] be a Borel
measurable function, called the cost function. Then the optimal transport map is the map
Φ ∶ 𝑋 → 𝑌 that realizes the following infimum

inf {∫
𝑋

𝑐(𝑥, Φ(𝑥))d𝜇(𝑥)∣Φ ∶ 𝑋 → 𝑌, Φ♯𝜇 = 𝜈} . (2.1)

Remark 2.1.2. Although the above formulation is very natural there is an issue with it.
An admissible map Φ might not exist in general. For example, suppose that 𝜇 is a Dirac
measure while 𝜈 is not.

In order to overcome this issue, Leonid Kantorovich (1912-1986) proposed a slight relaxation
of Monge’s formulation. We first start with some basic definitions.

5



6 Chapter 2. Optimal Transport

Definition 2.1.3 (General transport plans). Let 𝑋, 𝑌 be metric spaces and let 𝜇 ∈ 𝒫(𝑋)
and 𝜈 ∈ 𝒫(𝑌). A transport plan between the measures 𝜇 and 𝜈 is a probability measure
𝛾 ∈ 𝒫(𝑋 × 𝑌) such that its marginals are 𝜇 and 𝜈. More formally we define the set of all
transport plans from 𝜇 to 𝜈 as

Γ(𝜇, 𝜈) = {𝛾 ∈ 𝒫(𝑋 × 𝑌)∣𝜋1
♯𝛾 = 𝜇, 𝜋2

♯𝛾 = 𝜈} , (2.2)

where 𝜋1 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋2 ∶ 𝑋 × 𝑌 → 𝑌 are the projections to the first and second
coordinate respectively.

Using the disintegration theorem (Theorem A.2.1) we can define the composition operation
between transport plans.

Proposition 2.1.4 (Composition of transport plans, [AGS05, Remark 5.3.3]). Let 𝑋1, 𝑋2,
𝑋3 be metric spaces and let 𝜇1 ∈ 𝒫(𝑋1), 𝜇2 ∈ 𝒫(𝑋2), 𝜇3 ∈ 𝒫(𝑋3). Also let 𝛾1 ∈ Γ(𝜇1, 𝜇2)
and 𝛾2 ∈ Γ(𝜇2, 𝜇3). Then there is a transport plan 𝛾2 ∘ 𝛾1 ∈ Γ(𝜇1, 𝜇3), called the composition
plan of 𝛾1 and 𝛾2, defined by

∫
𝑋1×𝑋3

𝑓 (𝑥1, 𝑥3)d(𝛾2 ∘ 𝛾1)(𝑥1, 𝑥3) = ∫
𝑋2

(∫
𝑋1×𝑋3

𝑓 (𝑥1, 𝑥3)d(𝛾1
𝑥2

× 𝛾2
𝑥2

)(𝑥1, 𝑥3))d𝜇2(𝑥2)

for any Borel function 𝑓 ∶ 𝑋1 × 𝑋3 → ℝ.

Remark 2.1.5. For a probability measure 𝜇 ∈ 𝒫(𝑋), the set Γ(𝜇, 𝜇) equipped with the
composition operation is a monoid.

Now we are ready for the Kantorovich formulation.

Definition 2.1.6 (Kantorovich formulation of OT, [Kan42]). Let 𝑋, 𝑌 be metric spaces and
let probability measures 𝜇 ∈ 𝒫(𝑋) and 𝜈 ∈ 𝒫(𝑌). Let 𝑐 ∶ 𝑋 × 𝑌 → [0, +∞] be a Borel
measurable cost function. Then the optimal transport plan is the plan 𝛾 ∈ Γ(𝜇, 𝜈) that
realizes the following infimum

𝐶(𝜇, 𝜈) ∶= inf {∫
𝑋×𝑌

𝑐(𝑥, 𝑦)d𝛾(𝑥, 𝑦)∣𝛾 ∈ Γ(𝜇, 𝜈)} . (2.3)

Remark 2.1.7. It is not hard to prove that the set Γ(𝜇, 𝜈) is non empty (e.g. 𝜇×𝜈 ∈ Γ(𝜇, 𝜈)),
so there always exist an admissible plan. Moreover, if 𝑋 and 𝑌 are compact metric spaces
and the cost function 𝑐 is continuous it also can be proved that there exists an optimal
transport plan 𝛾𝑜𝑝𝑡, see [San15, Theorem 1.4].

2.1.1 Dual problem

The Kantorovich problem is a convex optimization problem under convex constraints. Hence,
an important tool is the duality theory, which is typically used for convex problems.

Proposition 2.1.8 (Dual Kantorovich problem, [San15, Section 1.2]). Let 𝑋, 𝑌 be metric
spaces, let probability measures 𝜇 ∈ 𝒫(𝑋), 𝜈 ∈ 𝒫(𝑌) and let 𝑐 ∶ 𝑋 × 𝑌 → [0, +∞] be a cost
function. Then the dual problem of Equation (2.3) is given by

sup {∫
𝑋

𝑎(𝑥)d𝜇(𝑥) + ∫
𝑌

𝑏(𝑦)d𝜈(𝑦)∣𝑎 ∈ 𝐶𝑏(𝑋), 𝑏 ∈ 𝐶𝑏(𝑌), 𝑎 ⊕ 𝑏 ≤ 𝑐} . (2.4)

Here 𝑎 ⊕ 𝑏 ∶ 𝑋 × 𝑌 → ℝ is defined by (𝑎 ⊕ 𝑏)(𝑥, 𝑦) = 𝑎(𝑥) + 𝑏(𝑦).
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When the cost function 𝑐 is reasonably good, the dual problem admits an optimal solution
and also the value of the primal objective function is equal to the value of the dual objective
function as shown by the following theorem.

Theorem 2.1.9 ([San15, Theorem 1.39]). Let 𝑋, 𝑌 be complete metric spaces (i.e. Polish
metric spaces) and let probability measures 𝜇 ∈ 𝒫(𝑋) and 𝜈 ∈ 𝒫(𝑌). Now let 𝑐 ∶ 𝑋 × 𝑌 →
[0, +∞] be a uniformly continuous and bounded cost function. Then the dual problem in
Equation (2.4) admits an optimal solution (𝑎, 𝑏) and moreover we have that

𝐶(𝜇, 𝜈) = max {∫
𝑋

𝑎(𝑥)d𝜇(𝑥) + ∫
𝑌

𝑏(𝑦)d𝜈(𝑦)∣𝑎 ∈ 𝐶𝑏(𝑋), 𝑏 ∈ 𝐶𝑏(𝑌), 𝑎 ⊕ 𝑏 ≤ 𝑐} . (2.5)

2.1.2 Wasserstein spaces

Using the Kantorovich formulation of OT we can define a new metric in a space of measures,
called the Wasserstein metric.

Definition 2.1.10. Let (𝑋, 𝑑) be a metric space. For 𝑥0 ∈ 𝑋 and 𝑝 ≥ 1, define the space

𝒫𝑝(𝑋) = {𝜇 ∈ 𝒫(𝑋)∣ ∫
𝑋

𝑑𝑝(𝑥, 𝑥0)d𝜇(𝑥) < +∞} .

Note that the finiteness of this integral does not depend on the choice of 𝑥0. Now for
𝜇, 𝜈 ∈ 𝒫𝑝(𝑋) define

𝑊𝑝(𝜇, 𝜈) = min {∫
𝑋×𝑋

𝑑𝑝(𝑥, 𝑦)d𝛾(𝑥, 𝑦)∣𝛾 ∈ Γ(𝜇, 𝜈)}
1
𝑝

.

Note that 𝑊𝑝
𝑝(𝜇, 𝜈) = 𝐶(𝜇, 𝜈) with the cost function 𝑐(𝑥, 𝑦) = 𝑑𝑝(𝑥, 𝑦).

Proposition 2.1.11 ([San15, Proposition 5.1]). The quantity 𝑊𝑝 as defined in Defini-
tion 2.1.10 is a metric in the space 𝒫𝑝(𝑋). It is called the Wasserstein distance.

Now we state one of the most important properties of the Wasserstein distance.

Theorem 2.1.12 ([San15, Theorem 5.9]). Suppose that 𝑋 ⊆ ℝ𝑑 is a compact metric space
and let (𝜇𝑛) be a sequence of measures in 𝒫𝑝(𝑋) and 𝜇 ∈ 𝒫𝑝(𝑋). Then the sequence (𝜇𝑛)
converges weakly to 𝜇 if and only if 𝑊𝑝(𝜇𝑛, 𝜇) → 0.

2.2 Entropic regularization

While the Kantorovich problem is a convex problem, it is not a strictly convex problem. For
the applications, especially for the numerics, it desirable to have a strictly convex objective
function. In order to make the Kantorovich problem strictly convex we are going to add
regularization. The regularization function in this case is the probabilistic entropy. With
this regularization we can get fast numerical algorithms as well as better convergence rates
as we will see in Chapter 6.

Definition 2.2.1 (Probabilistic entropy). Let 𝑋, 𝑌 be metric spaces and consider 𝜇 ∈ 𝒫(𝑋)
and 𝜈 ∈ 𝒫(𝑌). Now for any 𝛾 ∈ Γ(𝜇, 𝜈) define

𝐇(𝛾) = 𝐇(𝛾 ∣ 𝜇, 𝜈) =
⎧{
⎨{⎩

∫𝑋×𝑌 (log( d𝛾
d(𝜇×𝜈)) − 1)d𝛾(𝑥, 𝑦), if 𝛾 ≪ 𝜇 × 𝜈

∞, otherwise.
(2.6)
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Definition 2.2.2 (Entropic Optimal Transport). Let 𝑋, 𝑌 be metric spaces and consider
𝜇 ∈ 𝒫(𝑋) and 𝜈 ∈ 𝒫(𝑌). Given a measurable cost function 𝑐 ∶ 𝑋 × 𝑋 → ℝ the Entropic
regularization of the Optimal Transport (EOT) with regularization parameter 𝜀 > 0 is the
minimization problem

𝐶𝜀(𝜇, 𝜈) ∶= inf {∫
𝑋×𝑌

𝑐(𝑥, 𝑦)d𝛾(𝑥, 𝑦) + 𝜀𝐇(𝛾)∣𝛾 ∈ Γ(𝜇, 𝜈)} , (2.7)

Note that if 𝜀 = 0, we have 𝐶0(𝜇, 𝜈) = 𝐶(𝜇, 𝜈), i.e. we get the unregularized version.

A very useful property of EOT is that it always have an optimal solution and this solution
has a closed formula.

Proposition 2.2.3 ([Nut21, Theorem 4.2]). The entropic regularization problem in Equa-
tion (2.7) has a unique minimizer 𝛾𝜀

𝑜𝑝𝑡 that can be written in the form

𝛾𝜀
𝑜𝑝𝑡 = 𝑔𝜀(𝜇 × 𝜈), (2.8)

where 𝑔𝜀 ∶ 𝑋 × 𝑌 → [0, 1] is defined by

𝑔𝜀(𝑥, 𝑦) = exp(
−𝑐(𝑥, 𝑦) + 𝑎(𝑥) + 𝑏(𝑦)

𝜀 ) , (2.9)

for some measurable functions 𝑎 ∶ 𝑋 → ℝ and 𝑏 ∶ 𝑌 → ℝ. We call the functions 𝑎, 𝑏 the
entropic potentials.

Remark 2.2.4. By Remark A.2.3 we get that the measure (𝛾𝜀
𝑜𝑝𝑡)𝑦 = [𝑔𝜀(𝜇×𝜈)]𝑦 = 𝑔𝜀(−, 𝑦)𝜇

are probability measures, thus ∫𝑋 d𝑔𝜀(−, 𝑦)𝜇 = 1 for all 𝑦 ∈ 𝑌. Hence we have

∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜇(𝑥) = 1, for almost all 𝑦 ∈ 𝑌 (2.10)

and similarly
∫

𝑌
𝑔𝜀(𝑥, 𝑦)d𝜈(𝑦) = 1, for almost all 𝑥 ∈ 𝑋. (2.11)

These equations give the following formulas for the optimal entropic potentials 𝑎 and 𝑏

𝑎(𝑥) = −𝜀 ⋅ log(∫
𝑋
exp(

−𝑐(𝑥, 𝑦) + 𝑏(𝑦)
𝜀 )d𝜈(𝑦)) , 𝜇-a.e. (2.12)

and
𝑏(𝑦) = −𝜀 ⋅ log(∫

𝑌
exp(

−𝑐(𝑥, 𝑦) + 𝑎(𝑥)
𝜀 )d𝜇(𝑥)) , 𝜈-a.e. (2.13)

Now, as we did in the unregularized version, there is a dual problem for Equation (2.7).

Proposition 2.2.5 ([Nut21, Theorem 4.7]). Let 𝑐 ∈ 𝐿1(𝜇 × 𝜈). Then

𝐶𝜀(𝜇, 𝜈) = sup
𝑢∈𝐿1(𝜇),𝑣∈𝐿1(𝜈)

∫
𝑋

𝑢(𝑥)d𝜇(𝑥) + ∫
𝑌

𝑣(𝑦)d𝜈(𝑦)

− 𝜀 (∫
𝑋×𝑌

exp(
−𝑐(𝑥, 𝑦) + 𝑢(𝑥) + 𝑣(𝑦)

𝜀 )d(𝜇 × 𝜈)(𝑥, 𝑦) − 1)

The supremum is attained by the entropic potentials 𝑎 ∈ 𝐿1(𝜇), 𝑏 ∈ 𝐿1(𝜈) from Proposi-
tion 2.2.3 and in this case we have

𝐶𝜀(𝜇, 𝜈) = ∫
𝑋

𝑎(𝑥)d𝜇(𝑥) + ∫
𝑌

𝑏(𝑦)d𝜈(𝑦)

The maximizers are almost surely unique up to an additive constant.
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Now we are going to examine how EOT behaves with respect to weak convergence.

Proposition 2.2.6. Let (𝑋, 𝑑) be a compact metric space. Consider 𝜀 > 0 and a continuous
cost function 𝑐 ∶ 𝑋 × 𝑋 → ℝ. Let (𝜇𝑛)𝑛 and (𝜈𝑛)𝑛 be sequences of probability measures such
that 𝜇𝑛 → 𝜇 and 𝜈𝑛 → 𝜈 weakly in 𝒫(𝑋). Suppose that 𝛾𝜀

𝑛 = 𝑔𝜀
𝑛(𝜇𝑛 × 𝜈𝑛) is the optimal

entropic plan between 𝜇𝑛 and 𝜈𝑛 with respect to 𝑐, and analogously suppose that 𝛾𝜀 = 𝑔𝜀(𝜇×𝜈)
to is the optimal entropic plan between 𝜇 and 𝜈 with respect to 𝑐. Then the family of functions
(𝑔𝜀

𝑛)𝑛 is uniformly equicontinuous and 𝑔𝜀
𝑛 → 𝑔𝜀 uniformly as 𝑛 → ∞.

Proof. This proof can be essentially found as part of the proof of [JMS22, Proposition 1]. Let
𝑎𝜀

𝑛 and 𝑏𝜀
𝑛 be the entropic potentials of the EOT problem between 𝜇𝑛 and 𝜈𝑛. By Remark 2.2.4

we have 𝜇𝑛-almost everywhere that

𝑎𝜀
𝑛(𝑥) = −𝜀 ⋅ log(∫

𝑋
exp(

−𝑐(𝑥, 𝑦) + 𝑏𝜀
𝑛(𝑦)

𝜀 )d𝜈𝑛(𝑦)) .

Obviously we can extend this definition for all 𝑥 ∈ 𝑋. Since 𝑋 is compact and 𝑐 is continuous
we get that 𝑐 is uniformly continuous hence there exists a modulus of continuity 𝜔 ∶ ℝ≥0 →
ℝ≥0 (cf. Definition A.3.1), i.e. a continuous, increasing and concave function with 𝜔(0) = 0
such that

∣𝑐(𝑥, 𝑦) − 𝑐(𝑥′, 𝑦′)∣ ≤ 𝜔 (√𝑑(𝑥, 𝑥′)2 + 𝑑(𝑦, 𝑦′)2) .

Now it is easy to see that 𝑎𝜀
𝑛 has the same modulus of continuity with 𝑐. Indeed,

𝑎𝜀
𝑛(𝑥′) = −𝜀 ⋅ log(∫

𝑋
exp(

−𝑐(𝑥′, 𝑦) + 𝑏𝜀
𝑛(𝑦)

𝜀 )d𝜈𝑛(𝑦))

≤ −𝜀 ⋅ log(∫
𝑋
exp(

−𝑐(𝑥, 𝑦) − 𝜔(𝑑(𝑥, 𝑥′)) + 𝑏𝜀
𝑛(𝑦)

𝜀 )d𝜈𝑛(𝑦))

= 𝑎𝜀
𝑛(𝑥) + 𝜔(𝑑(𝑥, 𝑥′)).

Hence the family (𝑎𝜀
𝑛)𝑛 is uniformly equicontinuous since all of the functions 𝑎𝜀

𝑛 have a
common modulus of continuity. By fixing the additive shift invariance, e.g. 𝑎𝜀

𝑛(𝑥0) = 0 for
some 𝑥0 ∈ 𝑋, and the fact that 𝑋 is compact we get that (𝑎𝜀

𝑛)𝑛 is also uniformly bounded.
Hence by the Arzela-Ascoli theorem (cf. Theorem A.3.4), there exists a uniformly convergent
subsequence of (𝑎𝜀

𝑛)𝑛 into some function 𝑎𝜀 ∶ 𝑋 → ℝ. Same for the family (𝑏𝜀
𝑛)𝑛. By going

into the limit (uniform convergence of 𝑎𝜀
𝑛, 𝑏𝜀

𝑛 and the weak limit 𝜇𝑛 → 𝜇) we see that 𝑎𝜀 and
𝑏𝜀 are the entropic potentials for the regularized problem between 𝜇 and 𝜈. Hence 𝑎𝜀 and
𝑏𝜀 are unique up to additive constant shift. But we already have 𝑎𝜀(𝑥0) = lim𝑛→∞ 𝑎𝜀

𝑛(𝑥0).
So we get that the whole sequence (𝑎𝜀

𝑛)𝑛 converges uniformly to 𝑎𝜀. Same for (𝑏𝜀
𝑛)𝑛. The

extension of (𝑎𝜀
𝑛, 𝑏𝜀

𝑛) carries over to 𝑔𝜀
𝑛(𝑥, 𝑦) = exp(−𝑐(𝑥,𝑦)+𝑎𝜀(𝑥)+𝑏𝜀(𝑦)

𝜀 ). As a result we get
that 𝑔𝜀

𝑛 converges uniformly to 𝑔 and that all (𝑔𝜀
𝑛)𝑛 have a common modulus of continuity

(obtained by combining the moduli of 𝑎𝜀
𝑛, 𝑏𝜀

𝑛 and 𝑐) which means that the family (𝑔𝜀
𝑛)𝑛 is

uniformly equicontinuous.

2.3 Discretization

The study of computational optimal transport begins when we assume that we are working
with discrete spaces or measures. For this section suppose that 𝑋 = {𝑥1, … , 𝑥𝑀} and
𝑌 = {𝑦1, … , 𝑦𝑁}. Then

𝜇 =
𝑀
∑
𝑖=1

𝜇𝑖𝛿𝑥𝑖
, with 𝜇𝑖 ≥ 0 and

𝑀
∑
𝑖=1

𝜇𝑖 = 1
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and

𝜈 =
𝑁

∑
𝑗=1

𝜈𝑗𝛿𝑦𝑗
, with 𝜈𝑗 ≥ 0 and

𝑁
∑
𝑗=1

𝜈𝑗 = 1.

Equivalently, we can identify 𝜇 and 𝜈 with the vectors (𝜇1, … , 𝜇𝑀) ∈ ℝ𝑀 and (𝜈1, … , 𝜈𝑁) ∈
ℝ𝑁. In this setting a plan 𝛾 can be identified with a matrix (𝛾𝑖𝑗)𝑖,𝑗ℝ𝑀×𝑁 with 𝛾𝑖𝑗 ≥ 0 and
Equation (2.2) becomes

Γ(𝜇, 𝜈) =
⎧{
⎨{⎩

𝛾 =
𝑀
∑
𝑖=1

𝑁
∑
𝑗=1

𝛾𝑖𝑗𝛿(𝑥𝑖,𝑦𝑗) ∈ 𝒫(𝑋 × 𝑌)∣
𝑁

∑
𝑗=1

𝛾𝑖𝑗 = 𝜇𝑖,
𝑀
∑
𝑖=1

𝛾𝑖𝑗 = 𝜈𝑗∀𝑖, 𝑗
⎫}
⎬}⎭

. (2.14)

Remark 2.3.1 (Discrete disintegration). Suppose that 𝛾 = ∑𝑖,𝑗 𝛾𝑖𝑗𝛿(𝑥𝑖,𝑦𝑗) and so 𝜇 = ∑𝑖 𝜇𝑖𝛿𝑥𝑖

with 𝜇𝑖 = ∑𝑗 𝛾𝑖𝑗 and 𝜈 = ∑𝑗 𝜈𝑗𝛿𝑦𝑗
with 𝜈𝑗 = ∑𝑖 𝛾𝑖𝑗. Then in this setting, the disintegration

takes the following form

∑
𝑖,𝑗

𝑓 (𝑥𝑖, 𝑦𝑗)𝛾𝑖𝑗 = ∑
𝑖

⎛⎜⎜
⎝

∑
𝑗

𝑓 (𝑥𝑖, 𝑦𝑗)𝛾𝑥𝑖
(𝑦𝑗)⎞⎟⎟

⎠
𝜇𝑖,

∑
𝑖,𝑗

𝑓 (𝑥𝑖, 𝑦𝑗)𝛾𝑖𝑗 = ∑
𝑗

⎛⎜
⎝

∑
𝑖

𝑓 (𝑥𝑖, 𝑦𝑗)𝛾𝑦𝑗
(𝑥𝑖)⎞⎟

⎠
𝜈𝑗.

Hence 𝛾𝑥𝑖
(𝑦𝑗) =

𝛾𝑖𝑗
𝜇𝑖

and 𝛾𝑦𝑗
(𝑥𝑖) =

𝛾𝑖𝑗
𝜈𝑗
.

In this discrete setting, the Kantorovich problem in Equation (2.3) becomes

𝐶(𝜇, 𝜈) ∶= inf {⟨𝑐, 𝛾⟩∣𝛾 ∈ Γ(𝜇, 𝜈)} , (2.15)

where we have identified 𝑐 ∶ 𝑋 × 𝑌 → ℝ to the matrix 𝑐 ∈ ℝ𝑀×𝑁 with 𝑐𝑖𝑗 = 𝑐(𝑥𝑖, 𝑦𝑗) and
⟨⋅, ⋅⟩ is the inner product. The dual Kantorovich problem in Equation (2.4) becomes

𝐶(𝜇, 𝜈) = max {⟨𝑎, 𝜇⟩ + ⟨𝑏, 𝜈⟩∣𝑎 ∈ ℝ𝑀, 𝑏 ∈ ℝ𝑁, 𝑎𝑖 + 𝑏𝑗 ≤ 𝑐𝑖𝑗} , (2.16)

and the entropic Kantorovich problem in Equation (2.7) becomes

𝐶𝜀(𝜇, 𝜈) ∶= inf
⎧{
⎨{⎩

∑
𝑖𝑗

𝛾𝑖𝑗 ⎛⎜
⎝

𝑐𝑖𝑗 + 𝜀 log⎛⎜
⎝

𝛾𝑖𝑗

𝜇𝑖𝜈𝑗
− 1⎞⎟

⎠
⎞⎟
⎠

∣𝛾 ∈ Γ(𝜇, 𝜈)
⎫}
⎬}⎭

. (2.17)

The optimal plan for the discrete entropic OT is given by

(𝛾𝜀
𝑜𝑝𝑡)𝑖𝑗

= exp⎛⎜
⎝

−𝑐𝑖𝑗 + 𝑎𝑖 + 𝑏𝑗

𝜀
⎞⎟
⎠

𝜇𝑖𝜈𝑗, (2.18)

where the vectors 𝑎 ∈ ℝ𝑀 and 𝑏 ∈ ℝ𝑁 represent the optimal entropic potentials and for
these potentials we have the following formulas according to the Equations (2.12) to (2.13)

𝑎𝑖 = −𝜀 ⋅ log⎛⎜⎜
⎝

𝑁
∑
𝑗=1

exp⎛⎜
⎝

−𝑐𝑖𝑗 + 𝑏𝑗

𝜀
⎞⎟
⎠

𝜈𝑗
⎞⎟⎟
⎠

, (2.19)

𝑏𝑗 = −𝜀 ⋅ log⎛⎜
⎝

𝑀
∑
𝑖=1

exp(
−𝑐𝑖𝑗 + 𝑎𝑖

𝜀 ) 𝜇𝑖⎞⎟
⎠

. (2.20)
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2.3.1 Sinkhorn algorithm

The Sinkhorn algorithm is a fast and efficient algorithm for calculating the optimal entropic
plan in the discrete case. It was firstly introduced in [Yul12] and the convergence was proved
in [Sin64], hence the name. More recently, [Cut13] showed that Sinkhorn’s algorithm
work very well numerically, especially on GPUs. The last paper can be considered as the
starting point of computational Optimal Transport, as it attracted the interest of applied
data sciences in OT.

The Sinkhorn algorithm is an iterative algorithm that approximates the optimal entropic
duals 𝑎 and 𝑏. Once we have an approximation of 𝑎 and 𝑏, we plug them in Equation (2.18)
to get an approximation of the optimal plan. The algorithm works as follows: Start with an
initial random vector 𝑏(0) = (𝑏(0)

1 , … , 𝑏(0)
𝑁 )

⊤
∈ ℝ𝑁 and for 𝑘 = 1, 2, … we set

𝑎(𝑘)
𝑖 = −𝜀 ⋅ log⎛⎜⎜

⎝

𝑁
∑
𝑗=1

exp⎛⎜⎜
⎝

−𝑐𝑖𝑗 + 𝑏(𝑘−1)
𝑗

𝜀
⎞⎟⎟
⎠

𝜈𝑗
⎞⎟⎟
⎠

,

𝑏(𝑘)
𝑗 = −𝜀 ⋅ log⎛⎜⎜

⎝

𝑀
∑
𝑖=1

exp⎛⎜⎜
⎝

−𝑐𝑖𝑗 + 𝑎(𝑘)
𝑖

𝜀
⎞⎟⎟
⎠

𝜇𝑖
⎞⎟⎟
⎠

,

until a stopping criterion terminates the algorithm.





Chapter 3

Transfer operators induced by a transport
plan

In this chapter we are going to present a general construction of transfer operators induced
by general transport plans. To the best of our knowledge, this was first introduced in
Section 4.1 of [JMS22]. We further extend these ideas by proving that the construction is
functorial in a certain sense and we also study the discrete case. Moreover, we show that
the classical definition of a transfer operator of a dynamical system is just a special case of
this construction. We are going to use the results of this chapter many times later.

3.1 Basic definitions and results

Definition 3.1.1. Let 𝑋, 𝑌 be metric spaces. Consider probability measures 𝜇 ∈ 𝒫(𝑋),
𝜈 ∈ 𝒫(𝑌) and let 𝛾 ∈ Γ(𝜇, 𝜈). The transport plan 𝛾 induces a linear operator 𝐺 = 𝐺(𝛾) ∶
𝐿𝑝(𝑋, 𝜇) → 𝐿𝑝(𝑌, 𝜈) with 𝑝 ≥ 1, defined by

𝐺ℎ =
d𝜋2

♯(𝐻𝛾)
d𝜋2

♯𝛾
=

d𝜋2
♯(𝐻𝛾)
d𝜈 ,

where 𝜋2 ∶ 𝑋 × 𝑌 → 𝑌 is the projection to the second coordinate and 𝐻(𝑥, 𝑦) = ℎ(𝑥) for
ℎ ∈ 𝐿𝑝(𝑋, 𝜇). Note that 𝐻𝛾 ≪ 𝛾, so 𝜋2

♯(𝐻𝛾) ≪ 𝜋2
♯𝛾 hence we indeed have a Radon-

Nikodym derivative.

First we show that this map is well defined.

Lemma 3.1.2. The map 𝐺 ∶ 𝐿𝑝(𝑋, 𝜇) → 𝐿𝑝(𝑌, 𝜈) with 𝑝 ≥ 1, is well defined.

Proof. Let ℎ ∈ 𝐿𝑝(𝑋, 𝜇). We need to show that 𝐺ℎ ∈ 𝐿𝑝(𝑌, 𝜈). For this, apply Lemma A.2.4
with 𝐴 = 𝑋 × 𝑌, 𝐵 = 𝑌, 𝛼 = 𝛾, 𝛽 = 𝜈, 𝐹 = 𝜋2 and 𝑓 (𝑥) = |𝑥|𝑝. Then we get

∫
𝑌

∣𝐺ℎ∣𝑝 d𝜈 = ∫
𝑌

∣∣∣∣

d𝜋2
♯(𝐻𝛾)
d𝜋2

♯𝛾
∣∣∣∣

𝑝

d𝜋2
♯𝛾

≤ ∫
𝑋×𝑌

∣
d(𝐻𝛾)
d𝛾 ∣

𝑝
d𝛾

13
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= ∫
𝑋×𝑌

∣𝐻(𝑥, 𝑦)∣𝑝 d𝛾(𝑥, 𝑦)

= ∫
𝑋×𝑌

∣ℎ(𝜋1(𝑥, 𝑦))∣𝑝 d𝛾(𝑥, 𝑦)

= ∫
𝑋

∣ℎ(𝑥)∣𝑝 d𝜋1
♯𝛾(𝑥)

= ∫
𝑋

∣ℎ∣𝑝 d𝜇 < +∞,

as wanted.

Remark 3.1.3 (Universal property of 𝐺). Using the Radon-Nikodym theorem we can see
that the map 𝐺 satisfies the following universal property, i.e. the map 𝐺 can be characterized
by the following equation:

∫
𝑌

𝜑(𝑦)(𝐺ℎ)(𝑦)d𝜈(𝑦) = ∫
𝑋×𝑌

𝜑(𝑦)ℎ(𝑥)d𝛾(𝑥, 𝑦), (3.1)

for all 𝜑 ∈ 𝐶(𝑌) and ℎ ∈ 𝐿𝑝(𝑋, 𝜇).

Lemma 3.1.4. The map 𝐺 ∶ 𝐿𝑝(𝑋, 𝜇) → 𝐿𝑝(𝑌, 𝜈) is linear.

Proof. This is immediate by the universal property of 𝐺 and the linearity of the integral.

Remark 3.1.5 (Explicit formula for 𝐺). Using the universal property of 𝐺 and disintegration
we get

∫
𝑋

𝜑(𝑦)(𝐺ℎ)(𝑦)d𝜈(𝑦) = ∫
𝑋×𝑌

𝜑(𝑦)ℎ(𝑥)d𝛾(𝑥, 𝑦)

= ∫
𝑌

(∫
𝑋

𝜑(𝑦)ℎ(𝑥)d𝛾𝑦(𝑥))d(𝜋2
♯𝛾)(𝑦)

= ∫
𝑋

𝜑(𝑦) (∫
𝑋

ℎ(𝑥)d𝛾𝑦(𝑥))d𝜈(𝑦),

for all 𝜑 ∈ 𝐶(𝑌), hence we have that 𝜈-a.e.

(𝐺ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)d𝛾𝑦(𝑥), (3.2)

where (𝛾𝑦)𝑦 is the disintegration of 𝛾 ∈ 𝒫(𝑋 × 𝑌) with respect to the second component.
In the case where 𝛾 = 𝑔(𝜇 × 𝜈) ∈ Γ(𝜇, 𝜈) for some function 𝑔 ∶ 𝑋 × 𝑌 → [0, 1], then it is
easy to see that Equation (3.2) reduces to

(𝐺ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑔(𝑥, 𝑦)d𝜇(𝑥). (3.3)

With this remark in mind we have the following proposition.

Proposition 3.1.6. Let 𝛾1 = 𝑔1(𝜇 × 𝜈) and 𝛾2 = 𝑔2(𝜇 × 𝜈) in Γ(𝜇, 𝜈). Then

∥𝐺(𝛾1) − 𝐺(𝛾2)∥𝐿2(𝑋,𝜇)→𝐿2(𝑌,𝜈) ≤ ∥𝑔1 − 𝑔2∥𝐿2(𝑋×𝑌,𝜇×𝜈) (3.4)

In particular, if 𝛾𝑛 = 𝑔𝑛(𝜇 × 𝜈) and 𝛾 = 𝑔(𝜇 × 𝜈) with 𝑔𝑛 → 𝑔 in the 𝐿2(𝑋 × 𝑌, 𝜇 × 𝜈) norm,
then 𝐺(𝛾𝑛) → 𝐺(𝛾) in the 𝐿2(𝑋, 𝜇) → 𝐿2(𝑌, 𝜈) operator norm.
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Proof. Let ℎ ∈ 𝐿2(𝑋, 𝜇). Then we have

∥𝐺(𝛾1)ℎ − 𝐺(𝛾2)ℎ∥2
𝐿2(𝑌,𝜈) = ∫

𝑋
[𝐺(𝛾1)ℎ(𝑦) − 𝐺(𝛾2)ℎ(𝑦)]2 d𝜈(𝑦)

= ∫
𝑋

∣∫
𝑋

(𝑔1(𝑥, 𝑦) − 𝑔2(𝑥, 𝑦))ℎ(𝑥)d𝜇(𝑥)∣
2
d𝜈(𝑦), by (3.3)

≤ ∫
𝑋

[∫
𝑋

(𝑔1(𝑥, 𝑦) − 𝑔2(𝑥, 𝑦))2 d𝜇(𝑥) ⋅ ∫
𝑋

ℎ(𝑥)2 d𝜇(𝑥)]d𝜈(𝑦)

= ∫
𝑋

∫
𝑋

(𝑔1(𝑥, 𝑦) − 𝑔2(𝑥, 𝑦))2 d𝜇(𝑥)d𝜈(𝑦) ⋅ ∫
𝑋

ℎ(𝑥)2 d𝜇(𝑥)

= ∥𝑔1 − 𝑔2∥2
𝐿2(𝑋×𝑌,𝜇×𝜈) ⋅ ∥ℎ∥2

𝐿2(𝑋,𝜇) ,

which implies Equation (3.4).

Now we prove that 𝐺 can be viewed as a functor.
Proposition 3.1.7 (Functoriality of G). Let (𝑋, 𝜇), (𝑌, 𝜈) and (𝑍, 𝜅) be Borel probability
spaces. Consider transport plans 𝛾1 ∈ Γ(𝜇, 𝜈), 𝛾2 ∈ Γ(𝜈, 𝜅) and the composition plan
𝛾2 ∘ 𝛾1 ∈ Γ(𝜇, 𝜅), as defined in Proposition 2.1.4. Then 𝐺(𝛾2 ∘ 𝛾1) = 𝐺(𝛾2) ∘ 𝐺(𝛾1) as
functions 𝐿𝑝(𝑋, 𝜇) → 𝐿𝑝(𝑍, 𝜅).
Proof. Let ℎ ∈ 𝐿𝑝(𝑋, 𝜇) and 𝜑 ∈ 𝐶(𝑍). Then

∫
𝑍

𝜑(𝑧)(𝐺(𝛾2 ∘ 𝛾1)ℎ)(𝑧)d𝜅(𝑧) = ∫
𝑋×𝑍

𝜑(𝑧)ℎ(𝑥)d(𝛾2 ∘ 𝛾1)(𝑥, 𝑧)

= ∫
𝑌

(∫
𝑋×𝑍

𝜑(𝑧)ℎ(𝑥)d(𝛾1
𝑦 × 𝛾2

𝑦)(𝑥, 𝑧))d𝜈(𝑦)

= ∫
𝑌

∫
𝑍

∫
𝑋

𝜑(𝑧)ℎ(𝑥)d𝛾1
𝑦(𝑥)d𝛾2

𝑦(𝑧)d𝜈(𝑦)

and

∫
𝑍

𝜑(𝑧) (𝐺(𝛾2) ∘ 𝐺(𝛾1)ℎ) (𝑧)d𝜅(𝑧) = ∫
𝑌×𝑍

𝜑(𝑧) (𝐺(𝛾1)ℎ) (𝑦)d𝛾2(𝑦, 𝑧)

= ∫
𝑌

(∫
𝑍

𝜑(𝑧) (𝐺(𝛾1)ℎ) (𝑦)d𝛾2
𝑦(𝑧))d𝜈(𝑦)

= ∫
𝑌

𝑣(𝑦)𝐺(𝛾1)ℎ(𝑦)d𝜈(𝑦), 𝑣(𝑦) = ∫
𝑍

𝜑(𝑧)d𝛾2
𝑦(𝑧)

= ∫
𝑋×𝑌

𝑣(𝑦)ℎ(𝑥)d𝛾1(𝑥, 𝑦)

= ∫
𝑌

(∫
𝑋

𝑣(𝑦)ℎ(𝑥)d𝛾1
𝑦(𝑥))d𝜈(𝑦)

= ∫
𝑌

∫
𝑍

∫
𝑋

𝜑(𝑧)ℎ(𝑥)d𝛾1
𝑦(𝑥)d𝛾2

𝑦(𝑧)d𝜈(𝑦).

Hence

∫
𝑍

𝜑(𝑧)(𝐺(𝛾2 ∘ 𝛾1)ℎ)(𝑧)d𝜅(𝑧) = ∫
𝑍

𝜑(𝑧) (𝐺(𝛾2) ∘ 𝐺(𝛾1)ℎ) (𝑧)d𝜅(𝑧),

for all ℎ ∈ 𝐿𝑝(𝑋, 𝜇) and 𝜑 ∈ 𝐶(𝑋), which proves what we wanted.

Remark 3.1.8. Let (𝑋, 𝑑) be a metric space. We define the category 𝒞 = 𝒞(𝑋) as follows:
• Obj(𝒞) = 𝒫(𝑋),

• 𝒞(𝜇, 𝜈) = Γ(𝜇, 𝜈).

• Composition: As defined in Proposition 2.1.4.
Then Proposition 3.1.7 shows that 𝐺 is a functor from the category 𝒞 to the category of real
vector spaces, with 𝐺(𝜇) = 𝐿𝑝(𝜇) (for a fixed 𝑝) and 𝐺(𝛾) as defined above.



16 Chapter 3. Transfer operators induced by a transport plan

3.2 The operator 𝐺 in the discrete case

In this section we are going to study the behaviour of the operator 𝐺 in the case where the
measures 𝜇 ∈ 𝒫(𝑋), 𝜈 ∈ 𝒫(𝑌) and 𝛾 ∈ Γ(𝜇, 𝜈) are discrete, i.e. convex combinations of
Dirac measures. For this section suppose that 𝑋 = {𝑥1, … , 𝑥𝑀} and 𝑌 = {𝑦1, … , 𝑦𝑁}. Then

𝛾 =
𝑀
∑
𝑖=1

𝑁
∑
𝑗=1

𝛾𝑖𝑗𝛿(𝑥𝑖,𝑦𝑗), 𝛾𝑖,𝑗 ≥ 0,
𝑀
∑
𝑖=1

𝑁
∑
𝑗=1

𝛾𝑖𝑗 = 1,

with 𝑥1, … , 𝑥𝑀 ∈ 𝑋 and 𝑦1, … , 𝑦𝑁 ∈ 𝑌. Moreover we have

𝜇 =
𝑀
∑
𝑖=1

𝜇𝑖𝛿𝑥𝑖
, 𝜇𝑖 =

𝑁
∑
𝑗=1

𝛾𝑖𝑗

and

𝜈 =
𝑁

∑
𝑗=1

𝜈𝑗𝛿𝑦𝑗
, 𝜈𝑗 =

𝑀
∑
𝑖=1

𝛾𝑖𝑗.

In this setting, Equation (3.2) becomes

(𝐺ℎ)(𝑦𝑗) =
𝑀
∑
𝑖=1

ℎ(𝑥𝑖)(𝛾𝑦𝑗
)(𝑥𝑖),

hence 𝐺ℎ = 𝐺 ⋅ ℎ, where ℎ ∈ 𝐿𝑝(𝑋, 𝜇) can be represented as ℎ = (ℎ(𝑥1), … , ℎ(𝑥𝑀))𝑇 ∈ ℝ𝑀

and 𝐺 ∈ ℝ𝑁×𝑀 is a matrix with 𝐺𝑗𝑖 = (𝛾𝑦𝑗
)(𝑥𝑖) =

𝛾𝑖𝑗
𝜈𝑗
, by Remark 2.3.1. This means that

the linear operator 𝐺 is just left multiplication with the matrix 𝐺.

If moreover we have that 𝛾 = 𝑔(𝜇 × 𝜈) (like in the optimal entropic plan), then we get

𝐺𝑗𝑖 = (𝛾𝑦𝑗
)(𝑥𝑖)

= [𝑔(𝜇 × 𝜈)]𝑦𝑗
(𝑥𝑖)

= (𝑔(−, 𝑦𝑗)𝜇)(𝑥𝑖), by Remark A.2.3
= 𝑔(𝑥𝑖, 𝑦𝑗)𝜇𝑖.

Hence we have

(𝐺ℎ)(𝑦𝑗) =
𝑀
∑
𝑖=1

ℎ(𝑥𝑖)𝑔(𝑥𝑖, 𝑦𝑗)𝜇𝑖.

3.3 Comparison with the classical transfer operator

In the theory of dynamical systems, a very useful tool for study of these systems is the
transfer operator, see for example [Klu+18], [DJ99] or [Sar12]. Here we will compare the
definition found in the dynamical systems area with our previous construction.

Definition 3.3.1 (Classical definition of transfer operator). Let 𝑋 be a metric space, let
𝜇 ∈ 𝒫(𝑋) be a probability measure and let 𝐹 ∶ 𝑋 → 𝑋 be a continuous function. Then
define the linear operator 𝑇 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝐹♯𝜇) by

𝑇ℎ =
d𝐹♯(ℎ𝜇)
d𝐹♯𝜇 . (3.5)
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Using Radon-Nikodym’s theorem and the property of pushforwards, it is easy to prove that
the operator 𝑇 satisfies the following universal property

∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝐹♯𝜇(𝑦) = ∫
𝑋

𝜑(𝐹(𝑥))ℎ(𝑥)d𝜇(𝑥), (3.6)

for all continuous test functions 𝜑 ∶ 𝑋 → ℝ. We can prove, as we did previously, that the
map 𝑇 is well defined and linear.

Now we show that Definition 3.3.1 is a special case of the Definition 3.1.1. In order to do
that we first need a few more definitions. We start with the definition of a Markov kernel. A
Markov kernel can be considered as a stochastic generalization of a deterministic map.

Definition 3.3.2 (Markov kernel, [Kle13, Definition 8.25]). Let 𝑋 and 𝑌 be metric spaces.
A Markov kernel from 𝑋 to 𝑌 is a map 𝜅 ∶ ℬ(𝑌) × 𝑋 → [0, 1] with the following properties:

1. For every (fixed) 𝐵 ∈ ℬ(𝑌), the map 𝜅𝐵 ∶ 𝑋 → [0, 1] defined by 𝑥 ↦ 𝜅(𝐵, 𝑥) is Borel
measurable.

2. For every (fixed) 𝑥 ∈ 𝑋, the map 𝜅𝑥 ∶ ℬ(𝑌) → [0, 1] defined by 𝐵 ↦ 𝜅(𝐵, 𝑥) is a
probability measure on 𝑌.

We will denote a Markov kernel 𝜅 by its probability measures (𝜅𝑥)𝑥∈𝑋.

Example 3.3.3 (Deterministic case). Let (𝜅𝑥) be a Markov kernel such that 𝜅𝑥 is a Dirac
measure for all 𝑥 ∈ 𝑋. Then the Markov kernel 𝜅 induces a mapping 𝐹 ∶ 𝑋 → 𝑌.

Remark 3.3.4. Intuitively, the quantity 𝜅𝑥(𝐵) describes the probability of the image of
𝑥 ∈ 𝑋 to land on the set 𝐵 ⊆ 𝑌. This means that the image of 𝑥 is “determined” by the
measure 𝜅𝑥.

Definition 3.3.5 (Markov operator). Let 𝑋 be a metric space and let (𝜅𝑥)𝑥∈𝑋 be a Markov
kernel from 𝑋 to 𝑋. Consider the map 𝐾 ∶ 𝒫(𝑋) → 𝒫(𝑋), defined by

∫
𝑋

𝜑(𝑥)d𝐾𝜇(𝑥) = ∫
𝑋

(∫
𝑋

𝜑(𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥), (3.7)

for all test functions 𝜑 ∈ 𝐶(𝑋) and all probability measures 𝜇 ∈ 𝒫(𝑋). In particular, for a
fixed 𝜇 ∈ 𝒫(𝑋) we have

(𝐾𝜇)(𝐴) = ∫
𝑋

𝜅𝑥(𝐴)d𝜇(𝑥). (3.8)

We will refer to the map 𝐾, as the Markov operator induced by the kernel (𝜅𝑥).

Example 3.3.6. Let 𝜇 = ∑𝑗 𝜇𝑗𝛿𝑥𝑗
with 𝑥𝑗 ∈ 𝑋, 𝜇𝑗 ≥ 0 and ∑𝑗 𝜇𝑗 = 1. Then

𝐾𝜇 = ∑
𝑗

𝜇𝑗𝜅𝑥𝑗
.

Indeed

𝐾𝜇(𝐴) = ∫
𝑋

𝜅𝑥(𝐴)d𝜇(𝑥)

= ∫
𝑋

𝜅𝑥(𝐴)d⎛⎜⎜
⎝

∑
𝑗

𝜇𝑗𝛿𝑥𝑗
⎞⎟⎟
⎠

(𝑥)

= ∑
𝑗

𝜇𝑗 ∫
𝑋

𝜅𝑥(𝐴)d𝛿𝑥𝑗
(𝑥)

= ∑
𝑗

𝜇𝑗𝜅𝑥𝑗
.
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Definition 3.3.7 (Markov plan). Let 𝑋, 𝑌 be metric spaces. Suppose we are given a Markov
kernel (𝜅𝑥)𝑥∈𝑋 from 𝑋 to 𝑌. Then by disintegration, any probability measure 𝜇 ∈ 𝒫(𝑋)
defines a unique probability measure 𝜌 = 𝜌(𝜇, (𝑘𝑥)) ∈ 𝒫(𝑋 × 𝑌) that satisfies

∫
𝑋×𝑋

𝜑(𝑥, 𝑦)d𝜌(𝑥, 𝑦) = ∫
𝑋

(∫
𝑋

𝜑(𝑥, 𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥), (3.9)

for all test functions 𝜑 ∈ 𝐶(𝑋 × 𝑋). In particular,

𝜌(𝐴 × 𝐵) = ∫
𝐴

𝜅𝑥(𝐵)d𝜇(𝑥), (3.10)

for all 𝐴 ∈ ℬ(𝑋) and 𝐵 ∈ ℬ(𝑌). We will refer to the measure 𝜌, as theMarkov plan induced
by the kernel (𝜅𝑥) and the measure 𝜇.

Remark 3.3.8. The measure 𝜌 is indeed a plan, as defined in Definition 2.1.3. Note that the
family (𝑘𝑥) is the (unique) disintegration of the measure 𝜌 with respect to the first marginal.
Hence 𝜋1

♯𝜌 = 𝜇. Moreover, we have that 𝜋2
♯𝜌 = 𝐾𝜇. Indeed,

∫
𝑋

𝜑(𝑥)d𝜋2
♯𝜌(𝑥) = ∫

𝑋×𝑋
𝜑(𝜋2(𝑥, 𝑦))d𝜌(𝑥, 𝑦)

= ∫
𝑋

(∫
𝑋

𝜑(𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥)

= ∫
𝑋

𝜑(𝑥)d𝐾𝜇(𝑥), by Equation (3.7).

Thus 𝜌 ∈ Γ(𝜇, 𝐾𝜇).

Now we can compare the classical definition of the transfer operator with Definition 3.1.1.

Proposition 3.3.9. Let 𝑋 be a metric space and let 𝐹 ∶ 𝑋 → 𝑋 be a continuous function. Fix
a probability measure 𝜇 ∈ 𝒫(𝑋). Let 𝑇 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝐹♯𝜇), as defined in Definition 3.3.1.
Let (𝜅𝑥)𝑥∈𝑋 be a Markov kernel defined by 𝜅𝑥 = 𝛿𝐹(𝑥) and let 𝐾 and 𝜌 be the corresponding
Morkov operator and plan. Then 𝐾𝜇 = 𝐹♯𝜇 and the operators 𝑇 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝐹♯𝜇) and
𝑇 = 𝐺(𝜌) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝐾𝜇) coincide.

Proof. Firstly, we show that 𝐾𝜇 = 𝐹♯𝜇. For any 𝐴 ∈ ℬ(𝑋) we have 𝐹♯𝜇(𝐴) = 𝜇(𝐹−1(𝐴)).
Now by Equation (3.8) we have

(𝐾𝜇)(𝐴) = ∫
𝑋

𝜅𝑥(𝐴)d𝜇(𝑥)

= ∫
𝑋

𝛿𝐹(𝑥)(𝐴)d𝜇(𝑥)

= ∫
𝑋

𝟏{𝐹(𝑥)∈𝐴} d𝜇(𝑥)

= ∫
𝑋

𝟏{𝑥∈𝐹−1(𝐴)} d𝜇(𝑥)

= 𝜇(𝐹−1(𝐴)),

i.e. 𝐾𝜇(𝐴) = 𝐹♯𝜇(𝐴) for all 𝐴 ∈ ℬ(𝑋). Now let 𝜑 ∈ 𝐶(𝑋) and ℎ ∈ 𝐿𝑝(𝜇). We have

∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝐹♯𝜇(𝑦) = ∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝐾𝜇(𝑦)

= ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)d𝜌(𝑥, 𝑦), by Equation (3.1)



3.3. Comparison with the classical transfer operator 19

= ∫
𝑋

(∫
𝑋

𝜑(𝑦)ℎ(𝑥)d𝛿𝐹(𝑥)(𝑦))d𝜇(𝑥), by Equation (3.9)

= ∫
𝑋

ℎ(𝑥)𝜑(𝐹(𝑥))d𝜇(𝑥)

= ∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d(𝐹♯𝜇)(𝑦), by Equation (3.6),

which proves that 𝑇ℎ = 𝑇ℎ almost everywhere, as wanted.





Chapter 4

Entropic Transfer Operators

In this chapter we are going to present the theory of entropic transfer operators. We start
with the deterministic case where it was first introduced in [JMS22]. Next we are going to
try to generalize these results the stochastic case.

Throughout this chapter all metric spaces 𝑋 are assumed compact subspaces of ℝ𝑑 and we
also fix the cost function 𝑐 ∶ 𝑋 × 𝑋 → ℝ to be given by 𝑐(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2

2. The
results also hold for a general compact space 𝑋 but since in all of the applications we have
𝑋 ⊆ ℝ𝑑 we will work with this assumption.

4.1 Deterministic case

All the constructions and results in this section are from [JMS22].

As mentioned in the Introduction, the main goal of the authors in [JMS22] is to solve the
following problem: Given a measure-preserving dynamical system (𝑋, 𝐹, 𝜇) we want to
find a discrete space 𝑋𝑁 ⊆ 𝑋 and a stochastic (i.e. measure-valued) map 𝐹𝑁 ∶ 𝑋𝑁 → 𝑋𝑁

that “captures the most relevant features of 𝐹”. They propose the following approach: The
dynamics of the system (𝑋, 𝐹, 𝜇) can be captured by the transfer operator 𝑇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇).
The idea now is to define 𝐹𝑁 via a regularized transfer operator 𝑇𝑁,𝜀 ∶ 𝐿2(𝜇𝑁) → 𝐿2(𝜇𝑁),
where 𝜀 denotes the magnitude of the regularization and (𝜇𝑁)𝑁 is a sequence of invariant
probability measures that converges weakly to 𝜇. The stochasticity of the function 𝐹𝑁 is
obtained by an optimal entropic transport plan.

A similar procedure can be applied to the transfer operator 𝑇, to get a regularized version
𝑇𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇). Intuitively, 𝑇𝜀 can be considered as a blurring of 𝑇 below the length
scale 𝜀. Finally, the authors have adopted the point of view that the “most relevant features”
are given by the spectrum of 𝑇𝜀.

Now we are going to formaly present these constructions and we are also going to state the
basic theorems. Here we note that in the construction of the entropic transfer operators
the fact that 𝜇 is 𝐹-invariant is not essential. Hence from now on we assume that 𝜇 is just a
probability measure in 𝑋 (i.e. not necessarily 𝐹-invariant).

21
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Entropic regularization of the tranfer operator. Recall the tranfer operator 𝑇 ∶ 𝐿𝑝(𝜇) →
𝐿𝑝(𝐹♯𝜇) as defined in Definition 3.3.1. Recall also that the operator 𝑇 satisfies the following
property: For any 𝜑 ∈ 𝐶(𝑋) we have

∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝐹♯𝜇(𝑦) = ∫
𝑋

𝜑(𝐹(𝑥))ℎ(𝑥)d𝜇(𝑥).

Let 𝛾𝜀 ∈ Γ(𝐹♯𝜇, 𝜇) be the optimal entropic plan between 𝐹♯𝜇 and 𝜇, i.e. 𝛾𝜀 = 𝑔𝜀(𝐹♯𝜇 × 𝜇),
with 𝑔𝜀(𝑥, 𝑦) = exp(−𝑐(𝑥,𝑦)+𝑎(𝑥)+𝑏(𝑦)

𝜀 ), according to Proposition 2.2.3. By Remark 2.2.4 we
have

∫
𝑋

𝑔𝜀(𝑥, 𝑦)d(𝐹♯𝜇)(𝑥) = 1 ⇔ ∫
𝑋

𝑔𝜀(𝐹(𝑥), 𝑦)d𝜇(𝑥) = 1 for 𝐹♯𝜇-almost all 𝑦 ∈ 𝑋

and
∫

𝑋
𝑔𝜀(𝑥, 𝑦)d𝜇(𝑦) = 1 for 𝜇-almost all 𝑥 ∈ 𝑋.

The optimal entropic plan 𝛾𝜀 induces the linear operator 𝐺𝜀 = 𝐺(𝛾𝜀) ∶ 𝐿𝑝(𝐹♯𝜇) → 𝐿𝑝(𝜇)
which is given by

(𝐺𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑔𝜀(𝑥, 𝑦)d𝐹♯𝜇(𝑥),

by Remark 3.1.5 and it satisfies

∫
𝑋

𝜑(𝑦)(𝐺𝜀ℎ)(𝑦)d𝜇(𝑦) = ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)𝑔𝜀(𝑥, 𝑦)d(𝐹♯𝜇 × 𝜇)(𝑥, 𝑦),

for all ℎ ∈ 𝐿𝑝(𝐹♯) and 𝜑 ∈ 𝐶(𝑋), by Remark 3.1.3.

Now define the operator 𝑇𝜀 = 𝐺𝜀 ∘ 𝑇 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇). Then by [JMS22, Equation 21] we
have

(𝑇𝜀ℎ)(𝑦) = ∫
𝑋

𝑔𝜀(𝐹(𝑥), 𝑦)ℎ(𝑥)d𝜇(𝑥).

Moreover, 𝑔𝜀(𝐹(⋅), ⋅)(𝜇 × 𝜇) ∈ Γ(𝜇, 𝜇). Now let 𝑡𝜀(𝑥, 𝑦) = 𝑔𝜀(𝐹(𝑥), 𝑦). Then

(𝑇𝜀ℎ)(𝑥, 𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝜀(𝑥, 𝑦)d𝜇(𝑥)

and 𝑡𝜀(𝜇 × 𝜇) ∈ Γ(𝜇, 𝜇).

Discrete approximation. Let (𝜇𝑁)𝑁 be a sequence of probability measures in 𝒫(𝑋) such
that 𝜇𝑁 → 𝜇 weakly. In the applications, we usually have 𝜇𝑁 = ∑𝑁

𝑘=1 𝑚𝑁
𝑘 𝛿𝑥𝑁

𝑘
with 𝑚𝑁

𝑘 ≥ 0,
∑𝑁

𝑘=1 𝑚𝑁
𝑘 = 1 and 𝑥𝑁

1 , … , 𝑥𝑁
𝑁 ∈ 𝑋.

As described before we can construct the following linear maps: For a fixed 𝑁 ∈ ℕ, let
𝑇𝑁 ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝐹♯𝜇𝑁) induced by 𝐹 and 𝜇𝑁 and also let 𝐺𝑁,𝜀 = 𝐺(𝛾𝑁,𝜀) ∶ 𝐿𝑝(𝐹♯𝜇𝑁) →
𝐿𝑝(𝜇𝑁) induced by the optimal entropic plan 𝛾𝑁,𝜀 between 𝐹♯𝜇𝑁 and 𝜇𝑁. Thus we can get
the linear map 𝑇𝑁,𝜀 = 𝐺𝑁,𝜀 ∘ 𝑇𝑁 ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇𝑁) with

(𝑇𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇𝑁(𝑥),

where 𝑡𝑁,𝜀(𝑥, 𝑦) = 𝑔𝑁,𝜀(𝐹(𝑥), 𝑦).
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In the case where 𝜇𝑁 = ∑𝑁
𝑘=1 𝑚𝑁

𝑘 𝛿𝑥𝑁
𝑘
we get

(𝑇𝑁,𝜀ℎ)(𝑥𝑁
𝑘 ) =

𝑁
∑
𝑗=1

ℎ(𝑥𝑁
𝑗 )𝑡𝑁,𝜀(𝑥𝑁

𝑗 , 𝑥𝑁
𝑘 )𝑚𝑁

𝑗 .

Note that in this setting 𝑡𝑁,𝜀 is equivalent with a 𝑁 × 𝑁 matrix (𝑡𝑁,𝜀(𝑥𝑁
𝑘 , 𝑥𝑁

𝑗 ))𝑁
𝑗,𝑘=1 that

satisfies the following relations
𝑁

∑
𝑗=1

𝑚𝑁
𝑗 𝑡𝑁,𝜀(𝑥𝑁

𝑘 , 𝑥𝑁
𝑗 )𝑚𝑁

𝑗 = 1,
𝑁

∑
𝑘=1

𝑚𝑁
𝑘 𝑡𝑁,𝜀(𝑥𝑁

𝑘 , 𝑥𝑁
𝑗 )𝑚𝑁

𝑗 = 1.

The matrix (𝑡𝑁,𝜀(𝑥𝑁
𝑘 , 𝑥𝑁

𝑗 ))𝑁
𝑗,𝑘=1 can be efficiently computed by the Sinkhorn algorithm, cf.

Section 2.3.1.

From the discrete to continuous. Our intuition tells us that we should have a convergence
result of some type between 𝑇𝑁,𝜀 and 𝑇𝜀 as 𝑁 → ∞. But 𝑇𝑁,𝜀 is an operator in 𝐿𝑝(𝜇𝑁) →
𝐿𝑝(𝜇𝑁) while 𝑇𝜀 is an operator in 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇). Hence we would like to extend the
operator 𝑇𝑁,𝜀 to 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇) in order to directly compare them.

Let 𝛾𝑁 be the optimal transport plan between 𝜇 and 𝜇𝑁. This induces an operator 𝑃𝑁 =
𝐺(𝛾𝑁) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇𝑁). Also let 𝛾̃𝑁 be the reverse (optimal) plan between 𝜇𝑁 and 𝜇, i.e.
𝛾̃𝑁 = (𝜋2, 𝜋1)♯𝛾𝑁. This also induces an operator 𝑃𝑁∗ = 𝐺(𝛾̃𝑁) ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇). Hence
we can define the operator 𝑇̂𝑁,𝜀 = 𝑃𝑁∗ ∘ 𝑇𝑁,𝜀 ∘ 𝑃𝑁 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇). Then according to
[JMS22, Equation 26] we have:

(𝑇̂𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥) ̂𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇(𝑥),

where
̂𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋
∫

𝑋
𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁

𝑥 (𝑣)d𝛾̃𝑁
𝑦 (𝑤),

with (𝛾𝑁
𝑥 ) being the disintegration of 𝛾𝑁 with respect to the first marginal and (𝛾̃𝑁

𝑥 ) being
the disintegration of 𝛾̃𝑁 with respect to the second marginal.

Convergence. With the above extension we have the following convergence result.

Theorem 4.1.1 ([JMS22, Proposition 1]). Let 𝜇𝑁 → 𝜇 weakly. Then ̂𝑡𝑁,𝜀 → 𝑡𝜀 in the
𝐿2(𝜇 × 𝜇)-norm and 𝑇̂𝑁,𝜀 → 𝑇𝜀 in the 𝐿2(𝜇) → 𝐿2(𝜇) operator norm.

Proposition 4.1.2 ([JMS22, Proposition 2]). The operator 𝑇𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) is compact.

Corollary 4.1.3 ([JMS22, Section 4.5], [DS88]). Since 𝑇𝜀 is a compact operator and 𝑇̂𝑁,𝜀 →
𝑇𝜀 in the operator norm, we have that the eigenvalues of 𝑇̂𝑁,𝜀 converge to the eigenvalues of
𝑇𝜀: Let 𝜆̂𝑁,𝜀

1 , 𝜆̂𝑁,𝜀
2 , … be the eigenvalues of 𝑇̂𝑁,𝜀. Then there is an ordering of the eigenvalues

of 𝑇𝜀, 𝜆𝜀
1, 𝜆𝜀

2, … such that 𝜆̂𝑁,𝜀
𝑘 → 𝜆𝜀

𝑘 for all 𝑘. Similar result holds for the eigenfunctions.

In [JMS22] the authors confirm the spectrum convergence by various numerical expiriments.

4.2 Stochastic Case

In this section we are going to try generalize the above results starting from a stochastic
setting. Remember that previously we started from a deterministic 𝐹 ∶ 𝑋 → 𝑋.
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Setup Let 𝑋 be a metric space. Consider a fixed Markov kernel (𝑘𝑥)𝑥∈𝑋 (cf. Defini-
tion 3.3.2) from 𝑋 to 𝑋 and a fixed probability measure 𝜇 ∈ 𝒫(𝑋). Let 𝐾 ∶ 𝒫(𝑋) → 𝒫(𝑋)
be the corresponding Markov operator (cf. Definition 3.3.5) which satisfies

∫
𝑋

𝜑(𝑥)d𝐾𝜇(𝑥) = ∫
𝑋

(∫
𝑋

𝜑(𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥),

and let 𝜌 ∈ Γ(𝜇, 𝐾𝜇) be the corresponding Markov plan (cf. Definition 3.3.7) which satisfies

∫
𝑋×𝑋

𝜑(𝑥, 𝑦)d𝜌(𝑥, 𝑦) = ∫
𝑋

(∫
𝑋

𝜑(𝑥, 𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥).

Finally, let 𝜈 ∶= 𝐾𝜇 ∈ 𝒫(𝑋). Note that the Markov kernel (𝜅𝑥)𝑥 can be identified with
(𝜌𝑥)𝑥, the disintegration of 𝜌 with respect to the first marginal.

The Markov kernel (𝜅𝑥) can be considered as a stochastic generalization of a deterministic
map. Indeed, let 𝐹 ∶ 𝑋 → 𝑋 be a measurable function. Let (𝜅𝛿

𝑥) be the Markov kernel
defined by 𝜅𝛿

𝑥 = 𝛿𝐹(𝑥). Then there is an one to one correspondance between the function 𝐹
and the kernel (𝜅𝛿

𝑥). Moreover, in this case we have 𝐾𝛿𝜇 = 𝐹♯𝜇 by Proposition 3.3.9.

In this stochastic case we can again define the stochastic transfer operator 𝑇 = 𝐺(𝜌) ∶
𝐿𝑝(𝜇) → 𝐿𝑝(𝐾𝜇) which is a generalization of the classical definition of the transfer operator,
as we saw in Proposition 3.3.9. By Remark 3.1.5, for any ℎ ∈ 𝐿𝑝(𝜇) we have

(𝑇ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)d𝜌𝑦(𝑥), (4.1)

where (𝜌𝑦)𝑦 is the disintegration of 𝜌 with respect to the second marginal and by Re-
mark 3.1.3 we have

∫
𝑋

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝜈(𝑦) = ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)d𝜌(𝑥, 𝑦), (4.2)

for all ℎ ∈ 𝐿𝑝(𝑋) and 𝜑 ∈ 𝐶(𝑋).

We follow the ideas for the constructions given in the previous section, i.e. wewill entropically
smooth the stochastic tranfer operator 𝑇 and from this we will try to prove a result similar
to Theorem 4.1.1. However, this is not possible in this framework, so we will settle with a
slightly weaker result. In order to overcome this shortcoming, we will introduced a modified
smoothing construction in the next chapter.

4.2.1 Entropic regularization of stochastic tranfer operator

Let 𝛾𝜀 ∈ Γ(𝐾𝜇, 𝜇) = Γ(𝜈, 𝜇) be the optimal entropic transport plan between 𝜈 and 𝜇, ie
𝛾𝜀 = 𝑔𝜀(𝜈 ×𝜇) with 𝑔𝜀(𝑥, 𝑦) = exp(−𝑐(𝑥,𝑦)+𝑎(𝑥)+𝑏(𝑦)

𝜀 ), by Proposition 2.2.3. By the marginal
conditions (Remark 2.2.4) we have

∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜈(𝑥) = 1, ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜇(𝑦) = 1.

The optimal entropic plan 𝛾𝜀 induces the linear operator 𝐺𝜀 = 𝐺(𝛾𝜀) ∶ 𝐿𝑝(𝜈) → 𝐿𝑝(𝜇) with

(𝐺𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑔𝜀(𝑥, 𝑦)d𝜈(𝑥),

by Remark 3.1.5.
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Now define 𝑇𝜀 = 𝐺𝜀 ∘ 𝑇 = 𝐺(𝛾𝜀 ∘ 𝜌) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇). Then we have

(𝑇𝜀ℎ)(𝑦) = (𝐺𝜀𝑇ℎ)(𝑦)

= ∫
𝑋

(𝑇ℎ)(𝑥)𝑔𝜀(𝑥, 𝑦)d𝐾𝜇(𝑥)

= ∫
𝑋×𝑋

𝑔𝜀(𝑧, 𝑦)ℎ(𝑥)d𝜌(𝑥, 𝑧), by Equation (4.1)

= ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)ℎ(𝑥)d𝜌𝑥(𝑧))d𝜇(𝑥)

= ∫
𝑋

ℎ(𝑥)𝑡𝜀(𝑥, 𝑦)d𝜇(𝑥),

where
𝑡𝜀(𝑥, 𝑦) = ∫

𝑋
𝑔𝜀(𝑧, 𝑦)d𝜌𝑥(𝑧) = ∫

𝑋
𝑔𝜀(𝑧, 𝑦)d𝜅𝑥(𝑧). (4.3)

Remark 4.2.1 (Comparison with the deterministic case). In the deterministic case, i.e.
when 𝜅𝑥 = 𝛿𝐹(𝑥) for some 𝐹 ∶ 𝑋 → 𝑋 we have

𝑡𝜀(𝑥, 𝑦) = ∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝛿𝐹(𝑥)(𝑧)

= 𝑔𝜀(𝐹(𝑥), 𝑦).

This means that all the constructions so far are indeed stochastic generalizations of the
deterministic case.

Proposition 4.2.2. Using the function 𝑡𝜀 defined in Equation (4.3), we have

𝑡𝜀(𝜇 × 𝜇) ∈ Γ(𝜇, 𝜇).

Hence
𝑇𝜀 = 𝐺(𝑡𝜀(𝜇 × 𝜇)). (4.4)

Proof. Observe that

∫
𝑋

𝑡𝜀(𝑥, 𝑦)d𝜇(𝑥) = ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜅𝑥(𝑧))d𝜇(𝑥)

= ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝐾𝜇(𝑥)

= 1

and

∫
𝑋

𝑡𝜀(𝑥, 𝑦)d𝜇(𝑦) = ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜅𝑥(𝑧))d𝜇(𝑦)

= ∫
𝑋×𝑋

𝑔𝜀(𝑧, 𝑦)d(𝜅𝑥 × 𝜇)(𝑧, 𝑦)

= ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜇(𝑦))d𝜅𝑥(𝑧)

= ∫
𝑋
d𝜅𝑥(𝑧)

= 1.
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4.2.2 Stochastic discrete approximation

Now suppose that we have an (discrete) approximation of the Markov plan 𝜌, i.e. let
(𝜌𝑁)𝑁 be a sequence of measures in 𝒫(𝑋) such that 𝜌𝑁 → 𝜌 weakly. Let 𝜇𝑁 = 𝜋1

♯𝜌𝑁 and
𝜈𝑁 = 𝐾𝜇𝑁 = 𝜋2

♯𝜌𝑁. Note that 𝜇𝑁 → 𝜇 and 𝜈𝑁 → 𝜈 weakly.

As we did before we can construct the following linear maps:

• 𝑇𝑁 = 𝐺(𝜌𝑁) ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜈𝑁)

• 𝐺𝑁,𝜀 = 𝐺(𝛾𝑁,𝜀) ∶ 𝐿𝑝(𝜈𝑁) → 𝐿𝑝(𝜇𝑁), where 𝛾𝑁,𝜀 is the optimal entropic plan between
𝜈𝑁 and 𝜇𝑁. For the plan 𝛾𝑁,𝜀 ∈ Γ(𝜈𝑁, 𝜇𝑁) we have:

𝛾𝑁,𝜀 = 𝑔𝑁,𝜀(𝜈𝑁 × 𝜇𝑁), 𝑔𝑁,𝜀(𝑥, 𝑦) = exp(
−𝑐(𝑥, 𝑦) + 𝑎𝑁(𝑥) + 𝑏𝑁(𝑦)

𝜀 ) ,

and by the marginal conditions we have

∫
𝑋

𝑔𝑁,𝜀(𝑥, 𝑦)d𝜈𝑁(𝑥) = 1, ∫
𝑋

𝑔𝑁,𝜀(𝑥, 𝑦)d𝜇𝑁(𝑦) = 1.

Thus we get the linear map 𝑇𝑁,𝜀 = 𝐺𝑁,𝜀 ∘ 𝑇𝑁 = 𝐺(𝛾𝑁,𝜀 ∘ 𝜌𝑁) ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇𝑁) with

(𝑇𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇𝑁(𝑥), (4.5)

where 𝑡𝑁,𝜀(𝑥, 𝑦) = ∫𝑋 𝑔𝑁,𝜀(𝑧, 𝑦)d𝜌𝑁
𝑥 (𝑧). As before, we get

𝑇𝑁,𝜀 = 𝐺(𝑡𝑁,𝜀(𝜇𝑁 × 𝜇𝑁)).

4.2.3 From the discrete to continuous

As in the previous section, let 𝛾𝑁, 𝛾̃𝑁 be the optimal transport plans between 𝜇, 𝜇𝑁

and 𝜇𝑁, 𝜇. These plans induce the linear maps 𝑃𝑁 = 𝐺(𝛾𝑁) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇𝑁) and
𝑃̃𝑁 = 𝐺(𝛾̃𝑁) ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇).

Hence we can define the operator 𝑇̂𝑁,𝜀 = 𝑃̃𝑁 ∘𝑇𝑁,𝜀 ∘𝑃𝑁 = 𝐺(𝛾̃𝑁 ∘𝛾𝑁,𝜀 ∘𝜌𝑁 ∘𝛾𝑁) ∶ 𝐿𝑝(𝜇) →
𝐿𝑝(𝜇). Then we have

(𝑇̂𝑁,𝜀ℎ)(𝑦) = 𝑃̃𝑁(𝑇𝑁,𝜀(𝑃𝑁ℎ))(𝑦)

= ∫
𝑋

𝑇𝑁,𝜀(𝑃𝑁ℎ)(𝑤)d𝛾̃𝑁
𝑦 (𝑤), by Equation (3.2)

= ∫
𝑋

∫
𝑋

(𝑃𝑁ℎ)(𝑣)𝑡𝑁,𝜀(𝑣, 𝑤)d𝜇𝑁(𝑣)d𝛾̃𝑁
𝑦 (𝑤), by Equation (4.5)

= ∫
𝑋

∫
𝑋2

ℎ(𝑥)𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁(𝑥, 𝑣)d𝛾̃𝑁
𝑦 (𝑤), by Equation (3.1)

= ∫
𝑋

∫
𝑋

∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁
𝑥 (𝑣)d𝜇(𝑥)d𝛾̃𝑁

𝑦 (𝑤), by disintegration

= ∫
𝑋

ℎ(𝑥) ̂𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇(𝑥),

where
̂𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋
∫

𝑋
𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁

𝑥 (𝑣)d𝛾̃𝑁
𝑦 (𝑤).

Hence
𝑇̂𝑁,𝜀 = 𝐺( ̂𝑡𝑁,𝜀(𝜇 × 𝜇)). (4.6)
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Moreover, we have

∫
𝑋

(𝑇̂𝑁,𝜀ℎ)(𝑦)𝜑(𝑦)d𝜇(𝑦) = ∫
𝑋

(𝑃𝑁∗(𝑇𝑁,𝜀(𝑃𝑁ℎ)))(𝑦)𝜑(𝑦)d𝜇(𝑦)

= ∫
𝑋2

𝜑(𝑦)𝑇𝑁,𝜀(𝑃𝑁ℎ)(𝑤)d𝛾̃𝑁(𝑤, 𝑦)

= ∫
𝑋2

(∫
𝑋

(𝑃𝑁ℎ)(𝑥)𝑡𝑁,𝜀(𝑥, 𝑤)𝜑(𝑦)d𝜇𝑁(𝑥))d𝛾𝑁(𝑦, 𝑤)

= ∫
𝑋2

∫
𝑋2

ℎ(𝑥)𝜑(𝑦)𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁(𝑥, 𝑣)d𝛾𝑁(𝑦, 𝑤)

= ∫
𝑋4

ℎ(𝑥)𝜑(𝑦)𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁(𝑥, 𝑣)d𝛾𝑁(𝑦, 𝑤).

4.2.4 Convergence

Here we would like to directly generalize Theorem 4.1.1. Unfortunately, we were not able
to prove such a result, so we have to settle with something slightly weaker.

Theorem 4.2.3. Let 𝜑 ∈ 𝐶(𝑋). Then 𝑇̂𝑁,𝜀𝜑 → 𝑇𝜀𝜑 in the 𝐿2(𝜇) norm as 𝑁 → ∞.

In order to prove the above theorem we need some lemmas.

Lemma 4.2.4. Let 𝜑 ∈ 𝐶(𝑋). Consider the measure 𝑇𝜑 ⋅ 𝜈, defined by

∫
𝑋

𝑓 (𝑥)d𝑇𝜑 ⋅ 𝜈(𝑥) = ∫
𝑋

(𝑇𝜑)(𝑥)𝑓 (𝑥)d𝜈(𝑥), ∀𝑓 ∈ 𝐶(𝑋)

and similarly define the measures 𝑇𝑁𝜑 ⋅ 𝜈𝑁 and 𝑇𝑁𝑃𝑁𝜑 ⋅ 𝜈𝑁. Then we have that 𝑇𝑁𝜑 ⋅ 𝜈𝑁 →
𝑇𝜑⋅𝜈 and 𝑇𝑁𝑃𝑁𝜑⋅𝜈𝑁 → 𝑇𝜑⋅𝜈 weakly. Moreover, note that (𝑇𝜑⋅𝜈)(𝑋) ≤ ‖𝜑‖∞ and similarly
for the other measures.

Proof. Let 𝑓 ∈ 𝐶(𝑋). Then

∫
𝑋

𝑓d𝑇𝑁𝜑 ⋅ 𝜈𝑁 = ∫
𝑋

(𝑇𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦)

= ∫
𝑋2

𝑓 (𝑦)𝜑(𝑥)d𝜌𝑁(𝑥, 𝑦)

→ ∫
𝑋2

𝑓 (𝑦)𝜑(𝑥)d𝜌(𝑥, 𝑦)

= ∫
𝑋

(𝑇𝜑)(𝑦)𝑓 (𝑦)d𝜈(𝑦)

= ∫
𝑋

𝑓d𝑇𝜑 ⋅ 𝜈,

which shows that 𝑇𝑁𝜑 ⋅ 𝜈𝑁 → 𝑇𝜑 ⋅ 𝜈 weakly. In order to prove the second convergence it is
enough to show that

∣∫
𝑋

(𝑇𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦) − ∫
𝑋

(𝑇𝑁𝑃𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦)∣ → 0,

because this means that the measures 𝑇𝑁𝜑 ⋅ 𝜈𝑁 and 𝑇𝑁𝑃𝑁𝜑 ⋅ 𝜈𝑁 have the same weak limit.
We have

∫
𝑋

(𝑇𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦) = ∫
𝑋2

𝑓 (𝑦)𝜑(𝑥)d𝜌𝑁(𝑥, 𝑦)

and
∫

𝑋
(𝑇𝑁𝑃𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦) = ∫

𝑋3
𝑓 (𝑦)𝜑(𝑤)d𝛾𝑁

𝑥 (𝑤)d𝜌𝑁(𝑥, 𝑦).
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Hence

∣∫
𝑋

(𝑇𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦) − ∫
𝑋

(𝑇𝑁𝑃𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦)∣

≤ ‖𝑓 ‖∞ ∫
𝑋2

|𝜑(𝑥) − 𝜑(𝑤)|d𝛾𝑁(𝑥, 𝑤).

Now it is enough to show that

∫
𝑋2

|𝜑(𝑥) − 𝜑(𝑤)|d𝛾𝑁(𝑥, 𝑤) → 0.

Since 𝜑 is uniformly continuous (continuous function in a compact space), it admits a
modulus of continuity 𝜔, i.e. there is a continuous, increasing and concave function
𝜔 ∶ ℝ≥0 → ℝ≥0 with 𝜔(0) = 0 such that

|𝜑(𝑥) − 𝜑(𝑥′)| ≤ 𝜔(|𝑥 − 𝑥′|), ∀𝑥, 𝑥′ ∈ 𝑋.

Hence we have

∫
𝑋2

|𝜑(𝑥) − 𝜑(𝑤)|d𝛾𝑁(𝑥, 𝑤) ≤ ∫
𝑋2

𝜔(|𝑥 − 𝑤|)d𝛾𝑁(𝑥, 𝑤)

≤ 𝜔 (∫
𝑋2

|𝑥 − 𝑤|d𝛾𝑁(𝑥, 𝑤)) .

By Jensen inequality we have

(∫
𝑋2

|𝑥 − 𝑤|d𝛾𝑁(𝑥, 𝑤))
2

≤ ∫
𝑋2

|𝑥 − 𝑤|2 d𝛾𝑁(𝑥, 𝑤) =∶ 𝑊2
2(𝜇, 𝜇𝑁)

⇒ ∫
𝑋2

|𝑥 − 𝑤|d𝛾𝑁(𝑥, 𝑤) ≤ 𝑊2(𝜇, 𝜇𝑁),

so

∣∫
𝑋

(𝑇𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦) − ∫
𝑋

(𝑇𝑁𝑃𝑁𝜑)(𝑦)𝑓 (𝑦)d𝜈𝑁(𝑦)∣

≤ 𝜔 (∫
𝑋2

|𝑥 − 𝑤|d𝛾𝑁(𝑥, 𝑤))

≤ 𝜔(𝑊2(𝜇, 𝜇𝑁))
→ 0,

since 𝜇𝑁 → 𝜇 weakly, cf. Theorem 2.1.12. Finally, by the definition of the measure 𝑇𝜑 ⋅ 𝜈
and Equation (4.2) we have

(𝑇𝜑 ⋅ 𝜈)(𝑋) = ∫
𝑋
d𝑇𝜑 ⋅ 𝜈(𝑥)

= ∫
𝑋

(𝑇𝜑)(𝑥)d𝜈(𝑥)

= ∫
𝑋×𝑋

𝜑(𝑥)d𝜌(𝑥, 𝑦)

≤ ‖𝜑‖∞.

This finishes the proof.

Lemma 4.2.5. Let 𝜂𝑁 be a sequence in ℳ(𝑋) with 𝜂𝑁 → 𝜂 ∈ ℳ(𝑋) weakly. Moreover
suppose that 𝜂𝑁(𝑋) ≤ 𝑀 for some 𝑀 ≥ 0. Define the functions 𝑓 𝑁, 𝑓 ∶ 𝑋 → ℝ by

𝑓 𝑁(𝑦) = ∫
𝑋

𝑔𝑁,𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥), 𝑓 (𝑦) = ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂(𝑥).

Then the family (𝑓 𝑁) is uniformly equicontinuous and 𝑓 𝑁 → 𝑓 uniformly.
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Proof. First we show that (𝑓 𝑁) is uniformly equicontinuous. We already know that the
family (𝑔𝑁,𝜀)𝑁 is uniformly equicontinuous, by Proposition 2.2.6, which means that there
exists a continuous, increasing and concave function 𝜔 ∶ ℝ≥0 → ℝ≥0 with 𝜔(0) = 0 such
that

∣𝑔𝑁,𝜀(𝑥, 𝑦) − 𝑔𝑁,𝜀(𝑥′, 𝑦′)∣ ≤ 𝜔 (√|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2) ,

for all 𝑁 (note that we have the same modulus of continuity 𝜔). Then we have

|𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑦′)| ≤ ∫
𝑋

|𝑔𝑁,𝜀(𝑥, 𝑦) − 𝑔𝑁,𝜀(𝑥, 𝑦′)|d𝜂𝑁(𝑥)

≤ 𝑀𝜔(|𝑦 − 𝑦′|).

Hence (𝑓 𝑁) is uniformly equicontinuous. We will abuse the notation and we will use the
same symbol 𝜔 for the common modulus of continuity of the family (𝑓 𝑁). Now for the
uniform convergence, we have for any 𝑦 ∈ 𝑋

|𝑓 𝑁(𝑦) − 𝑓 (𝑦)| = ∣∫
𝑋

𝑔𝑁,𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥) − ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂(𝑥)∣

≤ ∣∫
𝑋

𝑔𝑁,𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥) − ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥)∣

+ ∣∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥) − ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂(𝑥)∣

≤ 𝑀‖𝑔𝑁,𝜀 − 𝑔𝜀‖∞ + ∣∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥) − ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂(𝑥)∣ .

Now let 𝜋𝑁 ∈ Γ(𝜂, 𝜂𝑁) be the optimal transport plan between the measures 𝜂 and 𝜂𝑁. Then
we have

∣∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂𝑁(𝑥) − ∫
𝑋

𝑔𝜀(𝑥, 𝑦)d𝜂(𝑥)∣ = ∣∫
𝑋2

𝑔𝜀(𝑣, 𝑦)d𝜋𝑁(𝑢, 𝑣) − ∫
𝑋2

𝑔𝜀(𝑢, 𝑦)d𝜋𝑁(𝑢, 𝑣)∣

≤ ∫
𝑋2

∣𝑔𝜀(𝑣, 𝑦) − 𝑔𝜀(𝑢, 𝑦)∣d𝜋𝑁(𝑢, 𝑣)

≤ ∫
𝑋2

𝜔(|𝑢 − 𝑣|)d𝜋𝑁(𝑢, 𝑣)

≤ 𝜔 (∫
𝑋2

|𝑢 − 𝑣|d𝜋𝑁(𝑢, 𝑣))

≤ 𝜔 (𝑊2(𝜂, 𝜂𝑁)) .

Thus
|𝑓 𝑁(𝑦) − 𝑓 (𝑦)| ≤ 𝑀‖𝑔𝑁,𝜀 − 𝑔𝜀‖∞ + 𝜔 (𝑊2(𝜂, 𝜂𝑁)) ∀𝑦 ∈ 𝑋,

which means that

‖𝑓 𝑁 − 𝑓 ‖∞ ≤ 𝑀‖𝑔𝑁,𝜀 − 𝑔𝜀‖∞ + 𝜔 (𝑊2(𝜂, 𝜂𝑁))
→ 0,

because 𝑔𝑁,𝜀 → 𝑔𝜀 uniformly and 𝜂𝑁 → 𝜂 weakly.

Lemma 4.2.6. Let 𝑓 𝑁 be a uniformly equicontinuous family in 𝐶(𝑋) and suppose that 𝑓 𝑁 → 𝑓
uniformly. Then 𝑃𝑁∗𝑓 𝑁 → 𝑓 in the 𝐿2(𝜇) norm.

Proof. We have

‖𝑃𝑁∗𝑓 𝑁 − 𝑓 ‖𝐿2(𝜇) ≤ ‖𝑓 𝑁 − 𝑓 ‖𝐿2(𝜇) + ‖𝑃𝑁∗𝑓 𝑁 − 𝑓 𝑁‖𝐿2(𝜇).
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The first term goes to 0 because 𝑓 𝑁 → 𝑓 uniformly. For the second term, since (𝑓 𝑁) is
uniformly equicontinuous there exists a continuous, increasing and concave function 𝜔 ∶
ℝ≥0 → ℝ≥0 with 𝜔(0) = 0 such that

∣𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑦′)∣ ≤ 𝜔 (|𝑦 − 𝑦′|) .

Since 𝑋 is compact, 𝜔 can be assumed bounded, and thus equivalently we may demand
that (by considering the concave hull of (𝜔(√⋅))2)

∣𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑦′)∣2 ≤ 𝜔 (|𝑦 − 𝑦′|2) .

Now we have

‖𝑃𝑁∗𝑓 𝑁 − 𝑓 𝑁‖2
𝐿2(𝜇) = ∫

𝑋
∣𝑃𝑁∗𝑓 𝑁(𝑥) − 𝑓 𝑁(𝑥)∣2 d𝜇(𝑥)

= ∫
𝑋

∣∫
𝑋

(𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑥))d𝛾̃𝑁
𝑦 (𝑥)∣

2
d𝜇(𝑥), where 𝛾̃𝑁 ∈ Γ(𝜇𝑁, 𝜇)

≤ ∫
𝑋2

∣𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑥)∣2 d𝛾̃𝑁
𝑦 (𝑥)d𝜇(𝑥), by Jensen

= ∫
𝑋2

∣𝑓 𝑁(𝑦) − 𝑓 𝑁(𝑥)∣2 d𝛾𝑁(𝑥, 𝑦)

≤ ∫
𝑋2

𝜔 (|𝑦 − 𝑥|2)d𝛾𝑁(𝑥, 𝑦)

≤ 𝜔 (∫
𝑋2

|𝑦 − 𝑥|2 d𝛾𝑁(𝑥, 𝑦))

= 𝜔 (𝑊2
2(𝜇, 𝜇𝑁))

→ 0,

as wanted.

Now we are ready for the proof.

Proof of Theorem 4.2.3. Let 𝜂𝑁 = 𝑇𝑁𝑃𝑁𝜑 ⋅ 𝜈𝑁 and 𝜂 = 𝑇𝜑 ⋅ 𝜈. By Lemma 4.2.4 we get
that 𝜂𝑁 → 𝜂 weakly. Then by Lemma 4.2.5 for these 𝜂𝑁 and 𝜂, we get that the family
(𝐺𝑁,𝜀𝑇𝑁𝑃𝑁𝜑)𝑁 is uniformly equicontinuous and 𝐺𝑁,𝜀𝑇𝑁𝑃𝑁𝜑 → 𝐺𝜀𝑇𝜑 uniformly. Hence by
Lemma 4.2.6 we get that 𝑝𝑁∗𝐺𝑁,𝜀𝑇𝑁𝑃𝑁𝜑 = 𝑇̂𝑁,𝜀𝜑 converges to 𝐺𝜀𝑇𝜑 = 𝑇𝜀𝜑 in the 𝐿2(𝜇)
norm, as wanted.

Even though Theorem 4.2.3 has its own interest, we would like to have a convergence in
the operator norm, in order to get a convergence in the spectrum as in Corollary 4.1.3. We
propose a different approach that gives the desired results in the next chapter.



Chapter 5

Double entropic regularization

In this chapter we are going to introduce a new construction of the entropic transfer operator,
based on the previous work. The aim of the new construction is to get good convergence
results in the operator norm even in the stochastic setting, which we failed to do in the
previous chapter.

Throughout this chapter all metric spaces 𝑋 are assumed compact subspaces of ℝ𝑑 and we
also fix the cost function 𝑐 ∶ 𝑋 × 𝑋 → ℝ to be given by 𝑐(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2

2. The
results also hold for a general compact space 𝑋 but since in all of the applications we have
𝑋 ⊆ ℝ𝑑 we will work with this assumption.

Initial Setup. Let 𝑋 be a metric space. Consider a fixed Markov kernel (𝑘𝑥)𝑥∈𝑋 (cf. Defini-
tion 3.3.2) from 𝑋 to 𝑋 and a fixed probability measure 𝜇 ∈ 𝒫(𝑋). Let 𝐾 ∶ 𝒫(𝑋) → 𝒫(𝑋)
be the corresponding Markov operator (cf. Definition 3.3.5) which satisfies

∫
𝑋

𝜑(𝑥)d𝐾𝜇(𝑥) = ∫
𝑋

(∫
𝑋

𝜑(𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥),

and let 𝜌 ∈ Γ(𝜇, 𝐾𝜇) be the corresponding Markov plan (cf. Definition 3.3.7) which satisfies

∫
𝑋×𝑋

𝜑(𝑥, 𝑦)d𝜌(𝑥, 𝑦) = ∫
𝑋

(∫
𝑋

𝜑(𝑥, 𝑦)d𝜅𝑥(𝑦))d𝜇(𝑥).

Finally, let 𝜈 ∶= 𝐾𝜇 ∈ 𝒫(𝑋).

In this setting we define the stochastic transfer operator 𝑇 = 𝐺(𝜌) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝐾𝜇), by

(𝑇ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)d𝜌𝑦(𝑥), (5.1)

for ℎ ∈ 𝐿𝑝(𝜇).

The main objective of this part is to create new entropic tranfer operators 𝑇𝜀 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇)
and 𝑇𝑁,𝜀 ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇𝑁) such that 𝑇𝑁,𝜀 → 𝑇𝜀 in the operator norm. In the previous
chapter, the idea was to compose the tranfer operator 𝑇 with one entropic transport plan.
Now we will compose 𝑇 with two entropic transport plans.

31
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5.1 Double entropic regularization of tranfer operator

For this construction we are going to work in a more general context, where we will have
four probability measures and then we will restrict these results into our initial setup.

New Setup. Let 𝑋 be a metric space. Consider probability measures 𝜅, 𝜆 ∈ 𝒫(𝑋) and
𝜌 ∈ 𝒫(𝑋 × 𝑋). Let 𝜇 ∶= 𝜋1

♯𝜌 ∈ 𝒫(𝑋) and 𝜈 ∶= 𝜋2
♯𝜌 ∈ 𝒫(𝑋), so 𝜌 ∈ Γ(𝜇, 𝜈).

Now we consider the following transport plans:

• Let 𝛾𝜀 ∈ Γ(𝜈, 𝜆) be the optimal entropic transport plan between 𝜈 and 𝜆, ie 𝛾𝜀 =
𝑔𝜀(𝜈 × 𝜆), with 𝑔𝜀(𝑥, 𝑦) = exp(

−𝑐(𝑥,𝑦)+𝑎𝛾(𝑥)+𝑏𝛾(𝑦)
𝜀 ).

• Let 𝜌 ∈ Γ(𝜇, 𝜈).

• Let 𝜁 𝜀 ∈ Γ(𝜅, 𝜇) be the optimal entropic transport plan between 𝜅 and 𝜇, ie 𝜁 𝜀 =
𝑓 𝜀(𝜅 × 𝜇), with 𝑓 𝜀(𝑥, 𝑦) = exp(

−𝑐(𝑥,𝑦)+𝑎𝜁(𝑥)+𝑏𝜁(𝑦)
𝜀 ).

By the marginal conditions we have almost everywhere

∫
𝑋

𝑔𝜀(𝑥, 𝑥′)d𝜈(𝑥) = 1, ∫
𝑋

𝑔𝜀(𝑥, 𝑥′)d𝜆(𝑥′) = 1

and
∫

𝑋
𝑓 𝜀(𝑥, 𝑥′)d𝜅(𝑥) = 1, ∫

𝑋
𝑓 𝜀(𝑥, 𝑥′)d𝜇(𝑥′) = 1.

Now these transport plans induce the following linear operators:

• Let 𝐺𝜀 = 𝐺(𝛾𝜀) ∶ 𝐿𝑝(𝜈) → 𝐿𝑝(𝜆) which satisfies

∫
𝑋

𝜑(𝑦)(𝐺𝜀ℎ)(𝑦)d𝜆(𝑦) = ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)𝑔𝜀(𝑥, 𝑦)d(𝜈 × 𝜆)(𝑥, 𝑦),

for all ℎ ∈ 𝐿𝑝(𝜈) and 𝜑 ∈ 𝐶(𝑋).

• Let 𝑇 = 𝐺(𝜌) ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜈) which satisfies

∫
𝑌

𝜑(𝑦)(𝑇ℎ)(𝑦)d𝜈(𝑦) = ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)d𝜌(𝑥, 𝑦),

for all ℎ ∈ 𝐿𝑝(𝜇) and 𝜑 ∈ 𝐶(𝑋).

• Let 𝐹𝜀 = 𝐺(𝜑𝜀) ∶ 𝐿𝑝(𝜅) → 𝐿𝑝(𝜇) which satisfies

∫
𝑋

𝜑(𝑦)(𝐹𝜀ℎ)(𝑦)d𝜇(𝑦) = ∫
𝑋×𝑋

𝜑(𝑦)ℎ(𝑥)𝑓 𝜀(𝑥, 𝑦)d(𝜅 × 𝜇)(𝑥, 𝑦),

for all ℎ ∈ 𝐿𝑝(𝜅) and 𝜑 ∈ 𝐶(𝑋).

Now define the double smoothed entropic transfer operator 𝑇𝜀 = 𝐺𝜀 ∘𝑇∘𝐹𝜀 = 𝐺(𝛾𝜀 ∘𝜌∘𝜁 𝜀) ∶
𝐿𝑝(𝜅) → 𝐿𝑝(𝜆). Then for ℎ ∈ 𝐿𝑝(𝜅), we have

(𝑇𝜀ℎ)(𝑦) = ∫
𝑋

(𝑇𝐹𝜀ℎ)(𝑧)𝑔𝜀(𝑧, 𝑦)d𝜈(𝑧)

= ∫
𝑋×𝑋

(𝐹𝜀ℎ)(𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌(𝑤, 𝑧)
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= ∫
𝑋3

ℎ(𝑥)𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌(𝑤, 𝑧)d𝜅(𝑥)

= ∫
𝑋

ℎ(𝑥)𝑡𝜀(𝑥, 𝑦)d𝜅(𝑥),

where
𝑡𝜀(𝑥, 𝑦) = ∫

𝑋×𝑋
𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌(𝑤, 𝑧).

Proposition 5.1.1. Using the function 𝑡𝜀 defined in Section 5.1, we have

𝑡𝜀(𝜅 × 𝜆) ∈ Γ(𝜅, 𝜆).

Hence
𝑇𝜀 = 𝐺(𝑡𝜀(𝜅 × 𝜆)). (5.2)

Proof. Observe that

∫
𝑋

𝑡𝜀(𝑥, 𝑦)d𝜅(𝑥) = ∫
𝑋

(∫
𝑋

(∫
𝑋

𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌𝑤(𝑧))d𝜇(𝑤))d𝜅(𝑥)

= ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦) (∫
𝑋

𝑓 𝜀(𝑥, 𝑤)d𝜅(𝑥))d𝜌𝑤(𝑧))d𝜇(𝑤)

= ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜌𝑤(𝑧))d𝜇(𝑤)

= ∫
𝑋×𝑋

𝑔𝜀(𝑧, 𝑦)d𝜌(𝑤, 𝑧)

= ∫
𝑋

(∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜌𝑧(𝑤))d𝜈(𝑧)

= ∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜈(𝑧)

= 1

and

∫
𝑋

𝑡𝜀(𝑥, 𝑦)d𝜆(𝑦) = ∫
𝑋

(∫
𝑋

(∫
𝑋

𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌𝑤(𝑧))d𝜇(𝑤))d𝜆(𝑦)

= ∫
𝑋

(∫
𝑋

𝑓 𝜀(𝑥, 𝑤) (∫
𝑋

𝑔𝜀(𝑧, 𝑦)d𝜆(𝑦))d𝜌𝑤(𝑧))d𝜇(𝑤)

= ∫
𝑋

(∫
𝑋

𝑓 𝜀(𝑥, 𝑤)d𝜌𝑤(𝑧))d𝜇(𝑤)

= ∫
𝑋

𝑓 𝜀(𝑥, 𝑤)d𝜇(𝑤)

= 1.

5.2 Approximation

Now suppose that we have an approximation of the plan 𝜌 (in the applications, we are
going to have discrete measures), and the measures 𝜅 and 𝜆, i.e. let (𝜌𝑁)𝑁 be a sequence of
measures in 𝒫(𝑋 × 𝑋) such that 𝜌𝑁 → 𝜌 weakly and also let (𝜅𝑁) and (𝜆𝑁) be sequences
of probability measures in 𝒫(𝑋) such that 𝜅𝑁 → 𝜅 and 𝜆𝑁 → 𝜆 weakly. Let 𝜇𝑁 ∶= 𝜋1

♯𝜌𝑁

and 𝜈𝑁 ∶= 𝐾𝜇𝑁 = 𝜋2
♯𝜌𝑁. Note that also 𝜇𝑁 → 𝜇 and 𝜈𝑁 → 𝜈 weakly.

Similarly to the previous section, consider the following linear maps:

• 𝐺𝑁,𝜀 = 𝐺(𝛾𝑁,𝜀) ∶ 𝐿𝑝(𝜈𝑁) → 𝐿𝑝(𝜆𝑁), where 𝛾𝑁,𝜀 is the optimal entropic plan between
𝜈𝑁 and 𝜆𝑁.
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• 𝑇𝑁 = 𝐺(𝜌𝑁) ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜈𝑁)

• 𝐹𝑁,𝜀 = 𝐺(𝜁𝑁,𝜀) ∶ 𝐿𝑝(𝜅𝑁) → 𝐿𝑝(𝜇𝑁), where 𝜁𝑁,𝜀 is the optimal entropic plan between
𝜅𝑁 and 𝜇𝑁.

Thus we get the linear map 𝑇𝑁,𝜀 = 𝐺𝑁,𝜀∘𝑇𝑁∘𝐹𝑁,𝜀 = 𝐺(𝛾𝑁,𝜀 ∘𝜌𝑁∘𝜁𝑁,𝜀) ∶ 𝐿𝑝(𝜅𝑁) → 𝐿𝑝(𝜆𝑁)
with

(𝑇𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑥, 𝑦)d𝜅𝑁(𝑥), (5.3)

where
𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋×𝑋
𝑓 𝑁,𝜀(𝑥, 𝑤)𝑔𝑁,𝜀(𝑧, 𝑦)d𝜌𝑁(𝑤, 𝑧).

5.3 Convergence

Let 𝛾𝑁
𝜅 be the optimal transport plan between 𝜅 and 𝜅𝑁 and similarly, let 𝛾𝑁

𝜆 be the optimal
transport plan between 𝜆𝑁 and 𝜆. These plans induce the linear maps 𝐾𝑁 = 𝐺(𝛾𝑁

𝜅 ) ∶
𝐿𝑝(𝜅) → 𝐿𝑝(𝜅𝑁) and 𝐿𝑁 = 𝐺(𝛾𝑁

𝜆 ) ∶ 𝐿𝑝(𝜆𝑁) → 𝐿𝑝(𝜆).
Hence we can define the extension operator 𝑇̂𝑁,𝜀 = 𝐿𝑁 ∘ 𝑇𝑁,𝜀 ∘ 𝐾𝑁 = 𝐺(𝛾𝑁

𝜆 ∘ 𝛾𝑁,𝜀 ∘ 𝜌𝑁 ∘
𝜁𝑁,𝜀 ∘ 𝛾𝑁

𝜅 ) ∶ 𝐿𝑝(𝜅) → 𝐿𝑝(𝜆). Then we have

(𝑇̂𝑁,𝜀ℎ)(𝑦) = 𝐿𝑁(𝑇𝑁,𝜀(𝐾𝑁ℎ))(𝑦)

= ∫
𝑋

𝑇𝑁,𝜀(𝐾𝑁ℎ)(𝑤)d(𝛾𝑁
𝜆 )𝑦(𝑤)

= ∫
𝑋

∫
𝑋

(𝐿𝑁ℎ)(𝑣)𝑡𝑁,𝜀(𝑣, 𝑤)d𝜅𝑁(𝑣)d(𝛾𝑁
𝜆 )𝑦(𝑤)

= ∫
𝑋

∫
𝑋×𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁
𝜅 (𝑥, 𝑣)d(𝛾𝑁

𝜆 )𝑦(𝑤)

= ∫
𝑋

∫
𝑋

∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑣, 𝑤)d(𝛾𝑁
𝜅 )𝑥(𝑣)d𝜅(𝑥)d(𝛾𝑁

𝜆 )𝑦(𝑤)

= ∫
𝑋

ℎ(𝑥) ̂𝑡𝑁,𝜀(𝑥, 𝑦)d𝜅(𝑥),

where
̂𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋
∫

𝑋
𝑡𝑁,𝜀(𝑣, 𝑤)d(𝛾𝑁

𝜅 )𝑥(𝑣)d(𝛾𝑁
𝜆 )𝑦(𝑤),

with (𝛾𝑁
𝜅 )𝑥 being the disintegration of 𝛾𝑁

𝜅 with respect to the first marginal and (𝛾𝑁
𝜆 )𝑦 being

the disintegration of 𝛾𝑁
𝜆 with respect to the second marginal. Hence

𝑇̂𝑁,𝜀 = 𝐺( ̂𝑡𝑁,𝜀(𝜅 × 𝜆)). (5.4)

In this double smoothing setup we have convergence in the operator norm as shown in the
following theorem.
Theorem 5.3.1. Suppose that 𝜅𝑁 → 𝜅, 𝜆𝑁 → 𝜆 and 𝜌𝑁 → 𝜌 weakly. Then ̂𝑡𝑁,𝜀 → 𝑡𝜀 in the
𝐿2(𝜅 × 𝜆) norm and 𝑇̂𝑁,𝜀 → 𝑇𝜀 in the 𝐿2(𝜅) → 𝐿2(𝜆) operator norm.
Proof. By Equation (5.4), Equation (5.2) and Proposition 3.1.6 we have that

∥ ̂𝑡𝑁,𝜀 − 𝑡𝜀∥𝐿2(𝜅×𝜆) → 0 ⇒ ∥𝑇̂𝑁,𝜀 − 𝑇𝜀∥
𝐿2(𝜅)→𝐿2(𝜆)

→ 0.

So it is enough to show that ∥ ̂𝑡𝑁,𝜀 − 𝑡𝜀∥𝐿2(𝜅×𝜆) → 0. By the triangle inequality we get

∥ ̂𝑡𝑁,𝜀 − 𝑡𝜀∥𝐿2(𝜅×𝜆) ≤ ∥ ̂𝑡𝑁,𝜀 − 𝑡𝑁,𝜀∥𝐿2(𝜅×𝜆) + ∥𝑡𝑁,𝜀 − 𝑡𝜀∥𝐿2(𝜅×𝜆) ,

which means that it is enough to show that ∥ ̂𝑡𝑁,𝜀 − 𝑡𝑁,𝜀∥𝐿2(𝜅×𝜆) → 0 and ∥𝑡𝑁,𝜀 − 𝑡𝜀∥𝐿2(𝜅×𝜆) →
0 seperately.
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The first term. By Proposition 2.2.6 we have that the family (𝑔𝑁,𝜀) is equicontinuous,
i.e. all 𝑔𝑁,𝜀 admit the same modulus of continuity 𝜔𝑔. Similarly, all 𝑓 𝑁,𝜀 admit the same
modulus of continuity 𝜔𝑓. Since each family has its own modulus of continuity it is easy to
see that also the products (𝑓 𝑁,𝜀𝑔𝑁,𝜀)𝑁 admit the same modulus of continuity, i.e. there is a
continuous, increasing and concave function 𝜔 ∶ ℝ≥0 → ℝ≥0 with 𝜔(0) = 0 such that

∣𝑓 𝑁,𝜀(𝑥, 𝑤)𝑔𝑁,𝜀(𝑧, 𝑦) − 𝑓 𝑁,𝜀(𝑥′, 𝑤)𝑔𝑁,𝜀(𝑧, 𝑦′)∣ ≤ 𝜔 (√|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2) ,

for 𝑁 ∈ ℕ. Since 𝜌𝑁 is a probability measure, we get

∣𝑡𝑁,𝜀(𝑥, 𝑦) − 𝑡𝑁,𝜀(𝑥′, 𝑦′)∣ ≤ 𝜔 (√|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2) ,

for all 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝑋. Since 𝑋 is compact, 𝜔 can be assumed to be bounded, and thus
equivalently we may demand that

∣𝑡𝑁,𝜀(𝑥, 𝑦) − 𝑡𝑁,𝜀(𝑥′, 𝑦′)∣2 ≤ 𝜔 (|𝑥 − 𝑥′|2 + |𝑦 − 𝑦′|2) ,

where 𝜔 is the concave hull of [𝜔(√⋅)]2 and still continuous at 𝜔(0) = 0. As a result, we
have

∥ ̂𝑡𝑁,𝜀 − 𝑡𝑁,𝜀∥2
2 = ∫

𝑋2
( ̂𝑡𝑁,𝜀(𝑥, 𝑦) − 𝑡𝑁,𝜀(𝑥, 𝑦))2 d𝜅(𝑥)d𝜆(𝑦)

= ∫
𝑋2

(∫
𝑋2

𝑡𝑁,𝜀(𝑣, 𝑤) − 𝑡𝑁,𝜀(𝑥, 𝑦)d(𝛾𝑁
𝜅 )𝑥(𝑣)d(𝛾𝑁

𝜆 )𝑦(𝑤))
2
d𝜅(𝑥)d𝜆(𝑦)

≤ ∫
𝑋4

(𝑡𝑁,𝜀(𝑣, 𝑤) − 𝑡𝑁,𝜀(𝑥, 𝑦))2 d(𝛾𝑁
𝜅 )𝑥(𝑣)d(𝛾𝑁

𝜆 )𝑦(𝑤)d𝜅(𝑥)d𝜆(𝑦)

= ∫
𝑋2

[∫
𝑋2

(𝑡𝑁,𝜀(𝑣, 𝑤) − 𝑡𝑁,𝜀(𝑥, 𝑦))2 d(𝛾𝑁
𝜅 )𝑥(𝑣)d𝜅(𝑥)]d(𝛾𝑁

𝜆 )𝑦(𝑤)d𝜆(𝑦)

= ∫
𝑋4

(𝑡𝑁,𝜀(𝑣, 𝑤) − 𝑡𝑁,𝜀(𝑥, 𝑦))2 d𝛾𝑁
𝜅 (𝑥, 𝑣)d𝛾𝑁

𝜆 (𝑦, 𝑤)

≤ ∫
𝑋4

𝜔(|𝑥 − 𝑣|2 + |𝑦 − 𝑤|2)d𝛾𝑁
𝜅 (𝑥, 𝑣)d𝛾𝑁

𝜆 (𝑦, 𝑤)

≤ 𝜔 (∫
𝑋4

|𝑥 − 𝑣|2 + |𝑦 − 𝑤|2 d𝛾𝑁
𝜅 (𝑥, 𝑣)d𝛾𝑁

𝜆 (𝑦, 𝑤))

= 𝜔 (𝑊2
2(𝜅, 𝜅𝑁) + 𝑊2

2(𝜆, 𝜆𝑁))
→ 0,

as 𝜅𝑁 → 𝜅 and 𝜆𝑁 → 𝜆 weakly.

The second term. First of all, by Proposition 2.2.6 we get that 𝑔𝑁,𝜀 → 𝑔𝜀 and 𝑓 𝑁,𝜀 → 𝑓 𝜀

uniformly. Now let
̃𝑡𝑁,𝜀 = ∫

𝑋2
𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌𝑁(𝑤, 𝑧).

We have
∥𝑡𝑁,𝜀 − 𝑡𝜀∥2 ≤ ∥𝑡𝑁,𝜀 − ̃𝑡𝑁,𝜀∥2 + ∥ ̃𝑡𝑁,𝜀 − 𝑡𝜀∥2 .

On one hand, we have

∣𝑡𝑁,𝜀(𝑥, 𝑦) − ̃𝑡𝑁,𝜀(𝑥, 𝑦)∣ ≤ ∫
𝑋2

∣𝑓 𝑁,𝜀(𝑥, 𝑤)𝑔𝑁,𝜀(𝑧, 𝑦) − 𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)∣d𝜌𝑁(𝑤, 𝑧)

≤ ∫
𝑋2

∣𝑓 𝑁,𝜀(𝑥, 𝑤) (𝑔𝑁,𝜀(𝑧, 𝑦) − 𝑔𝜀(𝑧, 𝑦))∣d𝜌𝑁(𝑤, 𝑧)
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+ ∫
𝑋2

∣(𝑓 𝑁,𝜀(𝑥, 𝑤) − 𝑓 𝜀(𝑥, 𝑤)) 𝑔𝜀(𝑧, 𝑦)∣d𝜌𝑁(𝑤, 𝑧)

≤ ∥𝑓 𝑁,𝜀∥∞ ∥𝑔𝑁,𝜀 − 𝑔𝜀∥∞ + ∥𝑓 𝑁,𝜀 − 𝑓 𝜀∥∞ ∥𝑔𝜀∥∞ ,

hence
∥𝑡𝑁,𝜀 − ̃𝑡𝑁,𝜀∥∞ ≤ ∥𝑓 𝑁,𝜀∥∞ ∥𝑔𝑁,𝜀 − 𝑔𝜀∥∞ + ∥𝑓 𝑁,𝜀 − 𝑓 𝜀∥∞ ∥𝑔𝜀∥∞ → 0,

since ∥𝑓 𝑁,𝜀∥∞ → ∥𝑓 𝜀∥∞ < ∞ (𝑋 is compact). Thus 𝑡𝑁,𝜀 − ̃𝑡𝑁,𝜀 → 0 uniformly and so
∥𝑡𝑁,𝜀 − ̃𝑡𝑁,𝜀∥2 → 0.
On the other hand, we have

∣ ̃𝑡𝑁,𝜀(𝑥, 𝑦) − 𝑡𝜀(𝑥, 𝑦)∣ ≤ ∫
𝑋2

∣𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)∣d∣𝜌𝑁 − 𝜌∣ (𝑤, 𝑧)

≤ ∥𝑓 𝜀∥∞ ∥𝑔𝜀∥∞ ∥𝜌𝑁 − 𝜌∥𝑇𝑉
≤ 2 ∥𝑓 𝜀∥∞ ∥𝑔𝜀∥∞

and ̃𝑡𝑁,𝜀 → 𝑡𝜀 pointwise (since 𝜌𝑁 → 𝜌 weakly). Hence by Lebesgue’s dominated conver-
gence theorem for 𝐿𝑝 spaces we get that ∥ ̃𝑡𝑁,𝜀 − 𝑡𝜀∥2 → 0, as wanted. This finishes the
proof.

5.4 Discretization

As we mentioned above, in the applications we only work with discrete approximations of
measures. Now suppose that the measure 𝜌𝑁 has the following form

𝜌𝑁 =
𝑁

∑
𝑖=1

𝑁
∑
𝑗=1

𝜌𝑁
𝑖𝑗 𝛿(𝑥𝑁

𝑖 ,𝑥𝑁
𝑗 ), 𝜌𝑁

𝑖𝑗 ≥ 0,
𝑁

∑
𝑖,𝑗=1

𝜌𝑁
𝑖𝑗 = 1

with 𝑥𝑁
1 , … , 𝑥𝑁

𝑁 ∈ 𝑋. Since 𝜇𝑁 = 𝜋1
♯𝜌𝑁 and 𝜈𝑁 = 𝜋2

♯𝜌𝑁, we have

𝜇𝑁 =
𝑁

∑
𝑖=1

𝜇𝑁
𝑖 𝛿𝑥𝑁

𝑖
, 𝜇𝑁

𝑖 =
𝑁

∑
𝑗=1

𝜌𝑁
𝑖𝑗 , (5.5)

and

𝜈𝑁 =
𝑁

∑
𝑗=1

𝜈𝑁
𝑗 𝛿𝑥𝑁

𝑗
, 𝜈𝑁

𝑗 =
𝑁

∑
𝑖=1

𝜌𝑁
𝑖𝑗 . (5.6)

Hence, by Section 3.2, we have that

• The operator 𝐺𝑁,𝜀 is left multiplication with the matrix 𝐺𝑁, where 𝐺𝑁
𝑗𝑖 =

𝛾𝑁,𝜀
𝑖𝑗

𝜆𝑗
=

𝑔𝑁,𝜀(𝑥𝑖, 𝑥𝑗)𝜈𝑖.

• The operator 𝑇𝑁 is left multiplication with the matrix 𝑃𝑁, where 𝑃𝑁
𝑗𝑖 =

𝜌𝑁
𝑖𝑗

𝜈𝑗
. (If 𝜈𝑗 = 0,

then we set 𝑃𝑁
𝑗𝑖 = 0)

• The operator 𝐹𝑁,𝜀 is left multiplication with the matrix 𝐹𝑁, where 𝐹𝑁
𝑗𝑖 =

𝜁𝑁,𝜀
𝑖𝑗
𝜇𝑗

=
𝑓 𝑁,𝜀(𝑥𝑖, 𝑥𝑗)𝜅𝑖.

Now, since 𝑇𝑁,𝜀 = 𝐺𝑁,𝜀 ∘ 𝑇𝑁 ∘ 𝐹𝑁,𝜀, we get that the operator 𝑇𝑁,𝜀 is left multiplication with
the matrix 𝐺𝑁𝑃𝑁𝐹𝑁.
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5.5 Results about dynamical systems

So far, we have worked with general measures 𝜌, 𝜅, 𝜆, 𝜇 and 𝜈. Now we will restrict our
attention in the initial setup introduced in the beginning of the chapter. In this case, the
measure/plan 𝜌 is the Markov plan to a fixed Markov kernel (𝜅𝑥)𝑥 from 𝑋 to 𝑋, 𝜇 is a fixed
probability measure in 𝑋 and 𝜈 = 𝐾𝜇. Now setting 𝜅 = 𝜆 = 𝜇 in the previous work we get
a double entropic tranfer operator 𝑇𝜀 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇) with

(𝑇𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝜀(𝑥, 𝑦)d𝜇(𝑥), (5.7)

where
𝑡𝜀(𝑥, 𝑦) = ∫

𝑋×𝑋
𝑓 𝜀(𝑥, 𝑤)𝑔𝜀(𝑧, 𝑦)d𝜌(𝑤, 𝑧). (5.8)

Here 𝑓 𝜀 is the density of the optimal entropic plan between 𝜇 and 𝜇, and 𝑔𝜀 is the density
of the optimal entropic plan between 𝜈 and 𝜇.
Now let 𝜌𝑁 → 𝜌 weakly which gives 𝜇𝑁 → 𝜇 and 𝜈𝑁 → 𝜈 weakly, where 𝜇𝑁 = 𝜋1

♯𝜌𝑁 and
𝜈𝑁 = 𝜋2

♯𝜌𝑁. Then we get another linear operator 𝑇𝑁,𝜀 ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇𝑁) with

(𝑇𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥)𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇𝑁(𝑥),

where
𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋×𝑋
𝑓 𝑁,𝜀(𝑥, 𝑤)𝑔𝑁,𝜀(𝑧, 𝑦)d𝜌𝑁(𝑤, 𝑧).

Here 𝑓 𝑁,𝜀 is the density of the optimal entropic plan between 𝜇𝑁 and 𝜇𝑁, and 𝑔𝑁,𝜀 is the
density of the optimal entropic plan between 𝜈𝑁 and 𝜇𝑁.

As we did in Chapter 4 we extend the operator 𝑇𝑁,𝜀 ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇𝑁) to an operator
𝑇̂𝑁,𝜀 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇) by composing with the operators 𝑃𝑁 ∶ 𝐿𝑝(𝜇) → 𝐿𝑝(𝜇𝑁) (induced by
𝛾𝑁 the optimal plan between 𝜇 and 𝜇𝑁) and 𝑃𝑁∗ ∶ 𝐿𝑝(𝜇𝑁) → 𝐿𝑝(𝜇) left and right. Then

(𝑇̂𝑁,𝜀ℎ)(𝑦) = ∫
𝑋

ℎ(𝑥) ̂𝑡𝑁,𝜀(𝑥, 𝑦)d𝜇(𝑥),

where
̂𝑡𝑁,𝜀(𝑥, 𝑦) = ∫

𝑋
∫

𝑋
𝑡𝑁,𝜀(𝑣, 𝑤)d𝛾𝑁

𝑥 (𝑣)d𝛾𝑁
𝑦 (𝑤).

Now form Theorem 5.3.1, we get the corresponding results for the stochastic setting with
the double smoothing.

Theorem 5.5.1. Suppose that 𝜌𝑁 → 𝜌 weakly. Then ̂𝑡𝑁,𝜀 → 𝑡𝜀 in the 𝐿2(𝜇 × 𝜇) norm and
𝑇̂𝑁,𝜀 → 𝑇𝜀 in the 𝐿2(𝜇) → 𝐿2(𝜇) operator norm.

Since we have convergence in the operator norm we can follow the same steps as we saw in
Section 4.1. First we show that the double smoothed operator Τ𝜀 is compact.

Proposition 5.5.2. The operator 𝑇𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) is compact.

Proof. By Equation (5.7), it is enough we prove that

∫
𝑋×𝑋

(𝑡𝜀(𝑥, 𝑦))2 d(𝜇 × 𝜇)(𝑥, 𝑦) < ∞. (5.9)

This would prove that the operator 𝑇𝜀 is Hilbert-Schmidt integral operator which immedi-
ately shows that 𝑇𝜀 is compact. Equation (5.9) holds since 𝑓 𝜀 and 𝑔𝜀 are bounded functions
(continuous functions in a compact space) so 𝑡𝜀 is bounded (for fixed 𝜀).
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Corollary 5.5.3 ([DS88]). Since 𝑇𝜀 is a compact operator and 𝑇̂𝑁,𝜀 → 𝑇𝜀 in the operator
norm, we have that the eigenvalues of 𝑇̂𝑁,𝜀 converge to the eigenvalues of 𝑇𝜀: Let 𝜆̂𝑁,𝜀

1 , 𝜆̂𝑁,𝜀
2 , …

be the eigenvalues of 𝑇̂𝑁,𝜀. Then there is an ordering of the eigenvalues of 𝑇𝜀, 𝜆𝜀
1, 𝜆𝜀

2, … such
that 𝜆̂𝑁,𝜀

𝑘 → 𝜆𝜀
𝑘 for all 𝑘. Similar result holds for the eigenfunctions.

5.6 Numerical comparison with single smoothing

In this section we waNT to compare the spectrum of the double smoothed transfer operator
against the single smoothed tranfer operator using numerical experiments. We are going to
work with the circle example from [JMS22, Section 6.1]. We will use the symbol 𝑇𝜀

1 for
the single smoothed entropic tranfer operator and the symbol 𝑇𝜀

2 for the double smoothed
entropic tranfer operator. We use similar symbols for the discrete approximations. We will
present two types of experiments. The first one is the comparison of the two operators in
the deterministic case and the second one is the comparison in the stochastic case.

5.6.1 Deterministic Setting

Suppose that 𝑋 = 𝑆1 ≅ ℝ/ℤ ≅ [0, 1]/{0, 1} and 𝐹 ∶ 𝑋 → 𝑋 given by the shift map
𝐹(𝑥) = 𝑥 + 𝜃 (mod 1) for some angle 𝜃 ∈ [0, 1). Let (𝜅𝑥)𝑥 be the (deterministic) Markov
kernel induced by 𝐹 and let 𝜇 be the uniform probability measure on 𝑆1. For the discrete
approximation we randomly choose 𝑁 = 1000 points on 𝑆1 and we set 𝜇𝑁 as the uniform
probability measure over the 𝑁 chosen points. At first we set 𝜃 = 1

3 . In this case we expect
the spectra of both 𝑇𝑁,𝜀

1 and 𝑇𝑁,𝜀
2 to exhibit the 3rd roots of unity. The results are shown in

Figure 5.1. For an irrational 𝜃 = 1
𝜋 ≈ 1

3 the results are shown in Figure 5.2.

Numerically we can see that the qualitive characteristic of both the single and double
smoothing are very similar. In the double smoothing we observe that the extra regularization
just adds more blurring to the spectrum of the single smoothing.

5.6.2 Stochastic Setting

We will work again with the unit circle 𝑋 = 𝑆1 and 𝑁 = 1000. In this case we want to
create a stochastic “mapping” 𝐹 ∶ 𝑋 → 𝑋. As mentioned, this can be done via a Markov
kernel 𝜅 = (𝜅𝑥)𝑥. Essentially we send each 𝑥 ∈ 𝑋 to a point in 𝑋 according to the measure
𝜅𝑥 ∈ 𝒫(𝑋). In our case the mapping will be the shift map (as before) plus a small random
noise. More specifically, we take the angle 𝜑𝑥 of a point 𝑥 ∈ 𝑋 = 𝑆1 and we send it to an
angle 𝜑′

𝑥 according to 𝑁(𝜑𝑥 + 𝜃, 𝜎2), i.e. we rotate by angle 𝜃 and then we choose a point a
bit to the left or a bit to the right according to some normal distribution. Again we choose
𝜃 = 1/3 for comparison with the previous case and we let the standard deviation 𝜎 of the
noise and the regularization parameter 𝜀 vary. The results are shown in Figures 5.3 to 5.5.

First of all, we observe that for small values of 𝜎 the spectra of the stochastic operators 𝑇𝑁,𝜀
1

and 𝑇𝑁,𝜀
2 are similar to their deterministic counterparts. This can be explained by the fact

that for small 𝜎 we have 𝜑′
𝑥 ≈ 𝜑𝑥 + 𝜃 so the dataset is close to the deterministic case. On

the other hand, what is more surprising is the fact that the spectrum of the single smoothed
operator seems to be similar to the spectrum of the double smoothed operator regardless
of 𝜎 and 𝜀. Of course there is more blurring in the double smoothing since we regularized
twice.
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(a) Spectrum of the operator 𝑇𝑁,𝜀
1 (single smoothing, deterministic case)
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(b) Spectrum of the operator 𝑇𝑁,𝜀
2 (double smoothing, deterministic case)

Figure 5.1: Deterministic circle shift with 𝜃 = 1
3 using 𝑁 = 1000 points: spectra of 𝑇𝑁,𝜀

1 and
𝑇𝑁,𝜀

2 for 𝜀 from 10−4 to 10−1 (left to right, logarithmically).
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(a) Spectrum of the operator 𝑇𝑁,𝜀
1 (single smoothing, deterministic case)
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(b) Spectrum of the operator 𝑇𝑁,𝜀
2 (double smoothing, deterministic case)

Figure 5.2: Deterministic circle shift with 𝜃 = 1
𝜋 using 𝑁 = 1000 points: spectra of 𝑇𝑁,𝜀

1
and 𝑇𝑁,𝜀

2 for 𝜀 from 10−4 to 10−1 (left to right, logarithmically).
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(a) Spectrum of the operator 𝑇𝑁,𝜀
1 with 𝜎 = 0.01 (single smoothing, stochastic case)
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(b) Spectrum of the operator 𝑇𝑁,𝜀
2 with 𝜎 = 0.01 (double smoothing, stochastic case)

Figure 5.3: Stochastic circle shift with 𝜃 = 1
3 using 𝑁 = 1000 points generated with 𝜎 = 0.01:

spectra of 𝑇𝑁,𝜀
1 and 𝑇𝑁,𝜀

2 for 𝜀 from 10−4 to 10−1 (left to right, logarithmically).

These plots show that even in the stochastic case the single smoothed operator seems to work
well, i.e. we can see that, at least numerically, the spectrum of 𝑇𝑁,𝜀

1 seems to converge to the
spectrum of 𝑇𝜀

1 (where for small 𝜎 it exhibits the third roots of unity as mentioned earlier).
Since we could not prove convergence in the operator norm for the single smoothing in the
stochastic setting, we did not expect to have convergence of the spectra in this case. We can
think two possible explanations about this phenomenon. The first one is that perhaps we
do have convergence of the single smoothed entropic operators in the operator norm, and
hence we get convergence of the spectra, but we cannot prove this results with the ideas
that we explored. The second one is that since we have convergence of the single smoothed
entropic operators 𝑇𝑁,𝜀𝜑 → 𝑇𝜀𝜑 in the 𝐿2-norm for all 𝜑 ∈ 𝐶(𝑋), see Theorem 4.2.3, and
since the eigenfunctions of 𝑇𝑁,𝜀

1 are “relatively” regular for large eigenvalues, maybe this
is enough to get convergence of the eigenvalues. This is an interesting observation where
further research is necessary in order to fully understand and explain this phenomenon.
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(a) Spectrum of the operator 𝑇𝑁,𝜀
1 with 𝜎 = 0.1 (single smoothing, stochastic case)
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(b) Spectrum of the operator 𝑇𝑁,𝜀
2 with 𝜎 = 0.1 (double smoothing, stochastic case)

Figure 5.4: Stochastic circle shift with 𝜃 = 1
3 using 𝑁 = 1000 points generated with 𝜎 = 0.1:

spectra of 𝑇𝑁,𝜀
1 and 𝑇𝑁,𝜀

2 for 𝜀 from 10−4 to 10−1 (left to right, logarithmically).
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(a) Spectrum of the operator 𝑇𝑁,𝜀
1 with 𝜎 = 1 (single smoothing, stochastic case)
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(b) Spectrum of the operator 𝑇𝑁,𝜀
2 with 𝜎 = 1 (double smoothing, stochastic case)

Figure 5.5: Stochastic circle shift with 𝜃 = 1
3 using 𝑁 = 1000 points generated with 𝜎 = 1:

spectra of 𝑇𝑁,𝜀
1 and 𝑇𝑁,𝜀

2 for 𝜀 from 10−4 to 10−1 (left to right, logarithmically).





Chapter 6

Convergence Rates

In this chapter we are going to study the convergence rates of the original entropic transfer
operator, i.e. the one with the single smoothing in the deterministic case. We start with
some recent results about the sample complexity and convergence rates of the regularized
and unregularized optimal transport. Next we try to establish similar rates for 𝑡𝑁,𝜀, the
kernel of the entropic tranfer operator for an approximation measure 𝜇𝑁. Finally, we present
some numerical experiments regarding the convergence of the spectrum of the operator
𝑇𝑁,𝜀 to the spectrum of the operator 𝑇𝜀.

6.1 Sample complexity of Optimal Transport

Throughout this section all metric spaces are assumed to be bounded subsets of ℝ𝑑 unless
specified otherwise. Moreover we assume that the cost function 𝑐 ∈ 𝐶𝑠+1(𝑋) for some
𝑠 > 𝑑

2 .

In this section we are going to review the basic results about the sample complexity of the
regularized and unregularized optimal transport. The first result in this area came in 1969
by Dudley in [Dud69]. He proved that the sample complexity of the unregularized optimal
transport is 𝑂(𝑁−1/𝑑). More formally, let 𝜇 ∈ 𝒫(𝑋) and 𝜈 ∈ 𝒫(𝑌). Then we can define
the empirical measures 𝜇̂𝑁 and ̂𝜈𝑁 as

𝜇̂𝑁 =
1
𝑁

𝑁
∑
𝑖=1

𝛿𝑋𝑖
̂𝜈𝑁 =

1
𝑁

𝑁
∑
𝑖=1

𝛿𝑌𝑖
(6.1)

where (𝑋1, … , 𝑋𝑁) and (𝑌1, … , 𝑌𝑁) are samples of size 𝑁 from 𝜇 and 𝜈, respectively. For
𝑑 > 2, Dudley proved that

𝔼 (∣𝐶(𝜇, 𝜈) − 𝐶(𝜇̂𝑁, ̂𝜈𝑁∣) = 𝑂 (𝑁− 1
𝑑 ) . (6.2)

In the same paper, Dudley proved that this rate is tight when 𝑋 = ℝ𝑑 and if one of the
two measures has a density with respect to the Lebesgue measure. Hence this is the best
complexity that we can have in the most general case. However, sharper and more refined
results have been developed since then, see for example [BGV07], [FG15], [WB19] and
[HSM22].
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More recently, in 2019, a similar result for the regularized optimal transport was presented
in [Gen+19].

Theorem 6.1.1 ([Gen+19, Theorem 3]). Suppose that 𝑐 is 𝐿-Lipschitz. Then one has

𝔼 (∣𝐶𝜀(𝜇, 𝜈) − 𝐶𝜀(𝜇̂𝑁, ̂𝜈𝑁∣) = 𝑂 ⎛⎜
⎝

𝑒
𝜅
𝜀

√𝑁
(1 +

1
𝜀𝑑/2 )⎞⎟

⎠
, (6.3)

where 𝜅 = 2𝐿diam(𝑋) + ‖𝑐‖∞ and the constants only depend on diam(𝑋), diam(𝑌), 𝑑 (the
dimension of the ambient space) and ‖𝑐(𝑘)‖∞ for 𝑘 = 0, … , ⌊𝑑

2⌋.

This kind of results can also be stated in the following fashion, using concentration inequali-
ties.

Corollary 6.1.2 ([Gen+19, Corollary 1]). Assuming the same setup as in Theorem 6.1.1,
with probability at least 1 − 𝛿 one has

∣𝐶𝜀(𝜇, 𝜈) − 𝐶𝜀(𝜇̂𝑁, ̂𝜈𝑁)∣ ≤ 6𝐵
𝜆𝐾
√𝑁

+ 𝐶√2 log 1
𝛿

𝑁 , (6.4)

for some constants 𝐶, 𝜆 and 𝐾.

Remark 6.1.3. Loosely speaking, we can say that the unregularized OT has sample com-
plexity 𝑂(𝑁−1/𝑑), while the regularized OT has sample complexity 𝑂(𝑁−1/2); though in
the second case there is a constant that depends on 𝜀 hidden in the big O notation. This
shows that in general it might be worth considering to work with EOT rather than OT.

The above theorems give quantitive results for the convergence of 𝐶(𝜇̂𝑁, ̂𝜈𝑁) and 𝐶𝜀(𝜇̂𝑁, ̂𝜈𝑁)
as 𝑁 → ∞. Nowwe present a result regarding the convergence of optimal entropic potentials,
𝑎𝑁 and 𝑏𝑁.

Theorem 6.1.4 ([Lui+19, Theorem 6]). Let 𝑋 be compact. Then, there exists a constant
𝐫 = 𝐫(𝑋, 𝑐, 𝑑) such that with probability at least 1 − 𝜏 one has

‖𝑎 − 𝑎𝑁‖∞ ≤
8𝜀𝐫𝑒3𝐷/𝜀 log ( 3

𝜏)

√𝑁
, (6.5)

where 𝐷 = sup𝑥,𝑦∈𝑋 𝑐(𝑥, 𝑦). We have a similar result for ‖𝑏 − 𝑏𝑁‖∞.

Now with this result we can get convergence rates for the density of the optimal entropic
plan 𝑔𝑁,𝜀.

Proposition 6.1.5. Let 𝑔𝑁,𝜀 and 𝑔𝜀 be the densities of the optimal entropic plan for (𝜈𝑁, 𝜇𝑁)
and (𝜈, 𝜇) respectively, where the measures 𝜇𝑁, 𝜈𝑁 have the same form as in Equation (6.1).
Then, there exists a constant 𝐫 = 𝐫(𝑋, 𝑐, 𝑑) such that with probability at least 1 − 𝜏 one has

‖𝑔𝑁,𝜀 − 𝑔𝜀‖∞ ≤
𝐶𝑑𝑒

3𝐷2
𝜀 log 3

𝜏

√𝑁
, (6.6)

for some constant 𝐶𝑑 which only depends on 𝑑 (and 𝑋) and 𝐷 = diam(𝑋).



6.2. Experimental analysis of the convergence of eigenvalues 45

Proof. By Proposition 2.2.3, we have that

𝑔𝜀(𝑥, 𝑦) = exp(
−𝑐(𝑥, 𝑦) + 𝑎(𝑥) + 𝑏(𝑦)

𝜀 ) , 𝑔𝑁,𝜀(𝑥, 𝑦) = exp(
−𝑐(𝑥, 𝑦) + 𝑎𝑁(𝑥) + 𝑏𝑁(𝑦)

𝜀 ) .

Using the well known inequality |𝑒−𝑥 − 𝑒−𝑦| ≤ |𝑥 − 𝑦| for all 𝑥, 𝑦 ≥ 0 we get

∣𝑔𝑁,𝜀(𝑥, 𝑦) − 𝑔𝜀(𝑥, 𝑦)∣ ≤
1
𝜀 ∣(𝑎𝑁(𝑥) − 𝑎(𝑥)) + (𝑏𝑁(𝑦) − 𝑏(𝑦))∣

≤
2𝐶𝑑𝑒

3𝐷2
𝜀 log 3

𝜏

√𝑁
, by Theorem 6.1.4.

Corollary 6.1.6. Let 𝑡𝑁,𝜀 and 𝑡𝜀 be the kernels for the single smoothing operators 𝑇𝑁,𝜀 and
𝑇𝜀, respectively. Then, there exists a constant 𝐫 = 𝐫(𝑋, 𝑐, 𝑑) such that with probability at least
1 − 𝜏 one has

‖𝑡𝑁,𝜀 − 𝑡𝜀‖∞ ≤
𝐶𝑑𝑒

3𝐷2
𝜀 log 3

𝜏

√𝑁
, (6.7)

for some constant 𝐶𝑑 which only depends on 𝑑 (and 𝑋) and 𝐷 = diam(𝑋).

Proof. The proof follows immediately from Proposition 6.1.5 and the fact that 𝑡𝜀(𝑥, 𝑦) =
𝑔𝜀(𝐹(𝑥), 𝑦) and 𝑡𝑁,𝜀(𝑥, 𝑦) = 𝑔𝑁,𝜀(𝐹(𝑥), 𝑦).

Remark 6.1.7. Corollary 6.1.6 gives a convergence rate of the kernels of the entropic
transfer operators 𝑇𝑁,𝜀 and 𝑇𝜀. It would be very interesting if we had a similar result for
the kernels ̂𝑡𝑁,𝜀 and 𝑡𝜀. If we had such a result for the kernels, by Proposition 3.1.6 we
would have the same rates for the operator norm ‖𝑇̂𝑁,𝜀 − 𝑇𝜀‖. This would open many
possible results about the convergence rates of the eigenvalues and eigenfunctions of the
two operators, see for example [JMS22, Theorem 2] for a result about the eigenfunctions.

Unfortunately, such a result might not be possible due to the bad sample complexity of the
unregularized OT. Recall that in order to extend the operator 𝑇𝑁,𝜀 ∶ 𝐿2(𝜇𝑁) → 𝐿2(𝜇𝑁) to
the operator 𝑇̂𝑁,𝜀 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) we used (twice) the optimal transport plan between
the measures 𝜇 and 𝜇𝑁, i.e. we included unregularized OT. Hence the convergence rate of
‖ ̂𝑡𝑁,𝜀 − 𝑡𝜀‖∞ should be at least as bad as the sample complexity of OT, which is 𝑂(𝑁−1/𝑑).
However, in [JMS22, Section 4.6] we see that the spectrum of 𝑇𝑁,𝜀 and 𝑇̂𝑁,𝜀 is the same, so
there might be possible to get convergence rates for the eigenvalues.

6.2 Experimental analysis of the convergence of eigenvalues

In Corollary 4.1.3 we saw that the spectrum of 𝑇𝑁,𝜀 converges to the spectrum of 𝑇𝜀 as
𝑁 → ∞. The first goal of this section is to visualize this convergence. The second goal is to
see how the speed of this convergence is affected by different regularizations 𝜀 and by the
ambient space dimension 𝑑.

We will work with the 𝑑-dimensional torus example (we saw a special case of it (𝑑 = 1)
in Section 5.6), cf. [JMS22, Section 5]. Let 𝑋 = 𝑇𝑑 ≅ ℝ𝑑/ℤ𝑑 with the shift function
𝐹 ∶ 𝑋 → 𝑋, 𝐹(𝑥) = 𝑥 + 𝜃 (mod 1). Now we fix 𝜃 = (1/3, … , 1/3) and 𝜇 is the uniform
probability measure. For any 𝑁, we choose randomly 𝑁 points on 𝑇𝑑 and we let 𝜇𝑁 to be
the uniform probability measure over the 𝑁 chosen points. In Figure 6.1 we have plotted the
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six largest eigenvalues (by absolute value) of each 𝑇𝑁,𝜀 for various dimensions 𝑑, various
regularizations 𝜀 and various sample sizes 𝑁.
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(a) 𝑑 = 1
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(b) 𝑑 = 3
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(c) 𝑑 = 5

Figure 6.1: The 6 largest eigenvalues (by absolute value) of 𝑇𝑁,𝜀 grouped by the dimension
𝑑, for 𝜀 from 10−2 to 1 (logarithmically).

We can see that the eigenvalues for smaller 𝑁 tend to get closer and closer to the eigenvalues
of the larger 𝑁. This numerically proves the convergence 𝜆𝑁,𝜀

𝑘 → 𝜆𝜀
𝑘 as 𝑁 → ∞ for all fixed

𝜀. Moreover, it is noteworty to observe that for bigger 𝜀 all the eigenvalues (except the first
eigenvalue which is always equal to 1) are clustered around 0, which hints towards the
fact that we have faster convergence for bigger 𝜀. On the other hand, we can see that for
𝜀 = 0.01 the convergence of the eigenvalues seems to be slower as the dimension 𝑑 increases.
For example, for 𝑑 = 1 we can only see the yellow points (the limit) while for 𝑑 = 5 there is
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a small but clearly visible spread of the colors.

Now we will focus more in the convergence speed of the eigenvalues since it is not very
clear how exactly it is affected by the dimension 𝑑. In order to visualize the speed of the
convergence we would like to plot the differences ∣𝜆𝜀

𝑘 − 𝜆𝑁,𝜀
𝑘 ∣ as 𝑁 → ∞ for various 𝜀 and

𝑑. Unfortunately we do not have a closed formula for 𝜆𝜀
𝑘 and we cannot calculate them

numerically as we do for 𝜆𝑁,𝜀
𝑘 . However, there is an approximation of 𝜆𝜀

𝑘 given by the
following proposition.

Proposition 6.2.1 ([JMS22, Proposition 3]). For any 𝜀 > 0, a complete system of eigenfunc-
tions of 𝑇𝜀 is given by the 𝜑𝑘 with 𝜑𝑘(𝑥) = 𝑒2𝜋𝑖𝑘𝑥. The respective eigenvalues 𝜆𝜀

𝑘 satisfy

∣𝜆𝜀
𝑘 − 𝑒−𝜋2𝜀|𝑘|⋅𝑒−2𝜋𝑖𝑘𝜃 ∣ ≤ 2𝑑+1𝑒− 1

8𝜀

uniformly for 0 < 𝜀 < 1/(8(𝑑 + 2) ln 2).

Unfortunately, this approximation works only for a specific set of 𝜀 and more importantly
the right hand side does not to go to 0 as 𝑁 → ∞. In order to visualize the errors ∣𝜆𝜀

𝑘 − 𝜆𝑁,𝜀
𝑘 ∣

we propose the following approach: Since 𝜆𝑁,𝜀
𝑘 → 𝜆𝜀

𝑘 as 𝑁 → ∞ we get that 𝜆𝜀
𝑘 ≈ 𝜆𝑁0,𝜀

𝑘
for some 𝑁0 big enough. Hence ∣𝜆𝜀

𝑘 − 𝜆𝑁,𝜀
𝑘 ∣ ≈ ∣𝜆𝑁0,𝜀

𝑘 − 𝜆𝑁,𝜀
𝑘 ∣. In our experiments we set

𝑁0 = 2197. We need to mention that in order to identify the eigenvalues 𝜆𝑁,𝜀
𝑘 for different

𝑁 (i.e. which eigenvalue corresponds to which “part” of the spectrum), we matched them
according to the solution of the assignment problem with respect to the euclidean distance.
Again we work with the 6 largest eigenvalues (by absolute value). The results are shown in
Figures 6.2 to 6.4, the y axis is logarithmically scaled. Note that the first plot in each figure
is just a straight line because all operators have the eigenvalue 𝜆𝑁,𝜀
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Figure 6.2: The differences ∣𝜆2197,𝜀
𝑘 − 𝜆𝑁,𝜀

𝑘 ∣ with 𝜀 = 0.01 for various 𝑘.
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Figure 6.3: The differences ∣𝜆2197,𝜀
𝑘 − 𝜆𝑁,𝜀

𝑘 ∣ with 𝜀 = 0.1 for various 𝑘.
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Figure 6.4: The differences ∣𝜆2197,𝜀
𝑘 − 𝜆𝑁,𝜀

𝑘 ∣ with 𝜀 = 1.0 for various 𝑘.

These plots clearly show that the eigenvalues 𝜆𝑁,𝜀
𝑘 indeed converge to 𝜆𝜀

𝑘 as 𝑁 → ∞.
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Moreover, we observe that as the dimension 𝑑 of the ambient space increases, the convergence
rate gets slower. This can be seen from the fact that in almost all of the plots the green line
(𝑑 = 5) tends to be above the orange line (𝑑 = 3) which itself tends to be above the blue line
(𝑑 = 1). On the other hand, note that when 𝜀 increases, the convergence rate gets faster.
This is also supported by Figure 6.5, where we take the largest error of the eigenvalues for
all 𝑁 and d for each 𝜀.
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Figure 6.5: The maximum errors for each 𝜀

Finally in Figure 6.6 we give another way to visualize the fact that in higher dimensions we
need more points, i.e. bigger 𝑁, in order to achieve similar convergence results. In this plot
we fix 𝑁 = 1000 and we also plot the full spectrum of 𝑇𝑁,𝜀. Notice that as 𝑑 gets bigger and
𝜀 gets smaller (i.e. we have little regularization) while we keep 𝑁 fixed, the point cloud of
the eigenvalues seems to be more spread out.
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Figure 6.6: Full spectrum of 𝑇𝑁,𝜀 with fixed 𝑁 = 1000 for various 𝑑 and 𝜀.

We conclude this section with our general thoughts about the above plots. The numerical
examples that we presented seem to suggest that the convergence rate of the difference
∣𝜆𝜀

𝑘 − 𝜆𝑁,𝜀
𝑘 ∣ in the torus example is better when 𝜀 increases and worse when 𝑑 increases.

Our intuition is that the rate should be similar as the one established in Corollary 6.1.6 for
all systems, not just the 𝑑-dimensional torus. Further research is required to theoretically
explain the above findings.





Chapter 7

Conclusion

7.1 Summary

In this thesis we gave an overview of recent results of the theory of entropic transfer operators
and we generalized the results appeared in [JMS22] for the stochastic case. In particular,
we first proved a result about the single smoothed entropic operator in the stochastic setting
which gave us convergence in the 𝐿2 norm but it was not enough to give us convergence
in the operator norm and hence convergence of the spectra. Then we introduced the
double smoothed entropic operator which has much better theoretical guarantees (i.e. we
get operator norm and eigenvalue convergence) and we also presented some numerical
examples comparing the two kinds of entropic operators. Furthermore, we tried to establish
convergence rates for the kernels of the single smoothed entropic operator, 𝑡𝑁,𝜀 and ̂𝑡𝑁,𝜀

based on sample complexities of the potentials of EOT. Finally we explored numerically the
convergence rates of the convergence of eigenvalues of 𝑇𝑁,𝜀 to the eigenvalues of 𝑇𝜀.

7.2 Future Work

Here are a few thoughts and remarks that have arisen during the writing of this thesis and
it would be interesting to further explore.

• One of our main contributions in this thesis is the introduction of double smoothed
entropic transfer operators. This happened because we could not prove the operator
norm convergence in the stochastic case, even though we had something slightly
weaker, cf. Theorem 4.2.3. Hence the question is: Can we somehow push the single
smoothed approach to work for the stochastic case? If not, can we pinpoint exactly
why and where it fails?

• Another possible area to think more about is the interaction between the double
double and single smoothed entropic operators. In particular, can we have a formal
proposition about the relation of the spectrum 𝑇̂𝑁,𝜀

1 (single smoothing) and 𝑇̂𝑁,𝜀
2

(double smoothing)?

• Finally an interesting research direction is to try to establish theoretical results regard-
ing the convergence rates of the eigenvalues 𝜆𝑁,𝜀

𝑘 . In our work with the 𝑑-dimensional
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torus we observed that the convergence rate of 𝜆𝑁,𝜀
𝑘 of this system seemed to be “close”

to 𝑂 ( 1
poly(𝑁)) (there are constants in the big O notation that depended from 𝜀 and

𝑑). Hence we pose the following conjecture.

Conjecture. Regardless of the system (𝑋, 𝐹, 𝜇), the convergence of the eigenvalues of
the (single) entropic tranfer operator 𝑇̂𝑁,𝜀 to the eigenvalues of 𝑇𝜀, have convergence

rate given by 𝑂 ⎛⎜
⎝

𝐶𝑑𝑒
3𝐷2

𝜀

√𝑁
⎞⎟
⎠

where 𝐷 = diam(𝑋) and 𝐶𝑑 is a constant that depends

exponentially on 𝑑.



Appendix A

Some Mathematical Background

In this chapter we are going to review some basic results from measure theory and real
analysis that are useful for the proofs in the main chapters.
We assume that the reader is already familiar with basic measure theory such as 𝜎-algebras,
measurable spaces, general measures, measurable functions, Lebesgue integral, 𝐿𝑝 spaces,
the Fubini-Tonelli theorem, the Radon-Nikodym theorem and the Dominated Convergence
theorem.

A.1 Pushforward

In this section we are giving the definition of the pushforward of a measure via a function.
Definition A.1.1. Let 𝑋, 𝑌 be metric spaces and let 𝐹 ∶ 𝑋 → 𝑌 be a measurable function. Fix
a measure 𝜇 ∈ ℳ(𝑋). We define the pushforward of 𝜇 via 𝐹 to be the measure 𝐹♯𝜇 ∈ ℳ(𝑌),
given by

(𝐹♯𝜇) (𝐵) = 𝜇 (𝐹−1(𝐵)) ,
for all 𝐵 ∈ ℬ(𝑌).
Remark A.1.2. Intuitively, if a metric space 𝑋 is distributed according to a probability
measure 𝜇 ∈ 𝒫(𝑋) and 𝐹 ∶ 𝑋 → 𝑌 is a function, then the image 𝐹(𝑋) is distributed
according to the probability measure 𝐹♯𝜇 ∈ 𝒫(𝑌).

Now we see the action of the pushforwards with respect to integrals.
Proposition A.1.3 ([BR07, Theorem 3.6.1]). The pushforward construction satisfies the
following property: Let 𝑋, 𝑌 be metric spaces, let 𝜇 ∈ 𝒫(𝑋) and let 𝐹 ∶ 𝑋 → 𝑌 be a measurable
function. Then for any 𝑔 ∶ 𝑌 → ℝ measurable function we have

∫
𝑌

𝑔(𝑦)d𝐹♯𝜇(𝑦) = ∫
𝑋

𝑔 (𝐹(𝑥))d𝜇(𝑥).

Example A.1.4 (Discrete case). Suppose that 𝜇 is a discrete measure, i.e. 𝜇 = ∑𝑛
𝑖=1 𝜇𝑖𝛿𝑥𝑖

for
some 𝑥1, … , 𝑥𝑛 ∈ 𝑋 and 𝜇𝑖 ≥ 0 with ∑𝑛

𝑖=1 𝜇𝑖 = 1. Then its pushforward is given by

𝐹♯𝜇(𝐴) = ∑
𝑖

𝜇𝑖𝛿𝑥𝑖
(𝐹−1(𝐴)) = ∑

𝑖
𝜇𝑖𝛿𝐹(𝑥𝑖)(𝐴),

i.e. 𝐹♯𝜇 = ∑𝑛
𝑖=1 𝜇𝑖𝛿𝐹(𝑥𝑖)
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A.2 Disintegration

In this section we are going to review the disintegration theorem which intuitively is the
“reverse” process of the construction of a product measure.

Theorem A.2.1 (Disintegration, [AGS05, Theorem 5.3.1]). Let 𝑋, 𝑌 be metric spaces, let
𝜋 ∶ 𝑌 → 𝑋 be a Borel measurable function, 𝜇 ∈ 𝒫(𝑌) and 𝜈 = 𝜋♯𝜇 ∈ 𝒫(𝑋). Then there
exists a 𝜈-a.e. uniquely determined Borel family of probability measures (𝜇𝑥)𝑥∈𝑋 ⊆ 𝒫(𝑌),
which provides a disintegration of 𝜇 into {𝜇𝑥}𝑥∈𝑋, such that:

• For every (fixed) 𝐵 ∈ ℬ(𝑌), the map 𝑥 ↦ 𝜇𝑥(𝐵) is Borel measurable.

• The measure 𝜇𝑥 “lives” on the fiber 𝜋−1(𝑥):

𝜇𝑥(𝑌 ∖ 𝜋−1(𝑥)) = 0 for 𝜈-a.e. 𝑥 ∈ 𝑋,

so 𝜇𝑥(𝐵) = 𝜇𝑥(𝐵 ∩ 𝜋−1(𝑥)).

• For every 𝑓 ∶ 𝑌 → [0, +∞] Borel measurable function we have

∫
𝑌

𝑓 (𝑦)d𝜇(𝑦) = ∫
𝑋

(∫
𝜋−1(𝑥)

𝑓 (𝑦)d𝜇𝑥(𝑦))d𝜈(𝑥).

Applications. Now we present some applications of the disintegration theorem. We begin
by seeing how we can “restrict” a measure in a product space 𝑋 × 𝑌 to one of its components
𝑋.

Proposition A.2.2 (Disintegration of product measures). Let 𝑌 = 𝑋1 × 𝑋2, 𝜇 ∈ 𝒫(𝑋1 × 𝑋2)
and 𝜋1 ∶ 𝑋1×𝑋2 → 𝑋1 be the projection to the first coordinate. Then (𝜋1)−1(𝑥1) = {𝑥1}×𝑋2 ≅
𝑋2. By disintegration, there exists a Borel family of probability measures {𝜇𝑥1

}𝑥1∈𝑋1
⊆

𝒫(𝑋1 × 𝑋2) such that:

• The measure 𝜇𝑥1
is a probability measure in 𝑋2. Indeed we have

𝜇𝑥1
((𝑋1 × 𝑋2) ∖ (𝜋1)−1(𝑥1)) = 0 ⇒ 𝜇𝑥1

((𝑋1 ∖ {𝑥1}) × 𝑋2) = 0

This means that supp(𝜇𝑥1
) ⊆ {𝑥1} × 𝑋2 ≅ 𝑋2. Hence we can assume that {𝜇𝑥1

}𝑥1∈𝑋1
⊆

𝒫(𝑋2).

• For every 𝑓 ∶ 𝑋1 × 𝑋2 → [0, +∞] Borel measurable function we have

∫
𝑋1×𝑋2

𝑓 (𝑥1, 𝑥2)d𝜇(𝑥1, 𝑥2) = ∫
𝑋1

(∫
𝑋2

𝑓 (𝑥1, 𝑥2)d𝜇𝑥1
(𝑥2))d𝜋1

♯𝜇(𝑥1).

In particular, taking 𝑓 to be the indicator function of 𝐴1 × 𝐴2 we have that

𝜇(𝐴1 × 𝐴2) = ∫
𝑋1

(∫
𝑋2

1𝐴1×𝐴2
(𝑥1, 𝑥2)d𝜇𝑥1

(𝑥2))d𝜋1
♯𝜇(𝑥1)

= ∫
𝑋1

(∫
𝑋2

1𝐴1
(𝑥1)1𝐴2

(𝑥2)d𝜇𝑥1
(𝑥2))d𝜋1

♯𝜇(𝑥1)

= ∫
𝑋1

1𝐴1
(𝑥1) (∫

𝑋2
1𝐴2

(𝑥2)d𝜇𝑥1
(𝑥2))d𝜋1

♯𝜇(𝑥1)

= ∫
𝑋1

1𝐴1
(𝑥1)𝜇𝑥1

(𝐴2)d𝜋1
♯𝜇(𝑥1)

= ∫
𝐴1

𝜇𝑥1
(𝐴2)d𝜋1

♯𝜇(𝑥1),

for any 𝐴1 ∈ ℬ(𝑋1) and 𝐴2 ∈ ℬ(𝑋2).
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Remark A.2.3 (Disintegration of product measure). Let 𝑋, 𝑌 be metric spaces, 𝜇 ∈ 𝒫(𝑋),
𝜈 ∈ 𝒫(𝑌) and ℎ ∶ 𝑋 × 𝑌 → [0, 1]. Then the disintegration of ℎ(𝜇 × 𝜈) ∈ 𝒫(𝑋 × 𝑌) is given
by [ℎ(𝜇 × 𝜈)]𝑦 = ℎ(−, 𝑦)𝜇 and [ℎ(𝜇 × 𝜈)]𝑥 = ℎ(𝑥, −)𝜈. Indeed using Fubini’s theorem we
have

∫
𝑋

∫
𝑌

𝑓 (𝑥, 𝑦)d[ℎ(𝜇 × 𝜈)]𝑥(𝑦)d𝜇(𝑥) = ∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)d[ℎ(𝜇 × 𝜈)](𝑥, 𝑦)

= ∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)ℎ(𝑥, 𝑦)d(𝜇 × 𝜈)(𝑥, 𝑦)

= ∫
𝑋

∫
𝑌

𝑓 (𝑥, 𝑦)ℎ(𝑥, 𝑦)d𝜈(𝑦)d𝜇(𝑥)

= ∫
𝑋

∫
𝑌

𝑓 (𝑥, 𝑦)d[ℎ(𝑥, −)𝜈](𝑦)d𝜇(𝑥),

for all measurable functions 𝑓 ∶ 𝑋 × 𝑌 → ℝ.

We conclude with another application of the disintegration theorem which will prove useful
later. It is essentially Jensen’s inequality for Radon-Nikodym derivatives with respect
pushforwards.

Lemma A.2.4 ([Cai+22, Lemma 3.15]). Let 𝑋, 𝑌 be metric spaces and 𝐹 ∶ 𝑋 → 𝑌 measurable.
Let 𝜇 ∈ 𝒫(𝑋), 𝜈 ∈ 𝒫(𝑌) such that 𝜇 ≪ 𝜈 (which implies that 𝐹♯𝜇 ≪ 𝐹♯𝜈). Finally, let
𝑓 ∶ ℝ → ℝ be a convex function. Then

∫
𝑌

𝑓 (
d𝐹♯𝜇
d𝐹♯𝜈 )d𝐹♯𝜈 ≤ ∫

𝑋
𝑓 (

d𝜇
d𝜈 )d𝜈.

A.3 Modulus of continuity

In this section we recall the notion of a modulus of continuity. This formalizes the idea of
uniform continuity in metric spaces. We also state the Arzela-Ascoli theorem.

Definition A.3.1. Let (𝑋, 𝜌) and (𝑌, 𝜎) be metric spaces. We say that a function 𝑓 ∶ 𝑋 → 𝑌
admits a modulus of continuity if there exists a function 𝜔 ∶ ℝ≥0 → ℝ≥0 with 𝜔(0) = 0
that is continous, increasing and concave which satisfies the following

𝜎(𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜔(𝜌(𝑥, 𝑥′)), ∀𝑥, 𝑥′ ∈ 𝑋.

Remark A.3.2. Obviously a function 𝑓 ∶ 𝑋 → 𝑌 is uniformly continous if and only if it
admits a modulus of continuity.

Now using moduli of continuity we can define the uniform equicontinuity of a family of
functions.

Definition A.3.3. Let (𝑋, 𝜌) and (𝑌, 𝜎) be metric spaces. Let ℱ be a family of functions
from 𝑋 to 𝑌. We call the family ℱ uniformly equicontinuous if and only if every function
𝑓 ∈ ℱ admits a common modulus of continuity 𝜔 ∶ ℝ≥0 → ℝ≥0.

Theorem A.3.4 (Arzela-Ascoli, [Rud76]). Let (𝑋, 𝑑) be a compact metric space and let
𝑓𝑛 ∶ 𝑋 → ℝ be continuous functions. Suppose that {𝑓𝑛}𝑛 is uniformly bounded, i.e. there is a
𝑀 ≥ 0 such that ‖𝑓𝑛‖∞ ≤ 𝑀 for all 𝑛 ∈ ℕ, and uniformly equicontinuous. Then there exists a
subsequence {𝑓𝑘𝑛

} of {𝑓𝑛}𝑛 that converges uniformly to a continous function 𝑓 ∶ 𝑋 → 𝑌.
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