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Περίληψη

Το ερώτημα της κατάταξης αντικειμένων από δυαδικές συγκρίσεις αποτελεί αντικείμενο
ενδιαφέροντος εδώ και πολύ καιρό. Αυτό το πρόβλημα έχει πολλές εφαρμογές στην
πραγματική ζωή, όπως στα συστήματα συστάσεων ή σε κατατάξεις ομάδων σε αθλητικές
δραστηριότητες. Επιπλέον, σε πολλές περιπτώσεις είναι θεμιτό να έχουμε ένα “σκορ” για
κάθε αντικείμενο έτσι ώστε να μπορούμε να κατανοήσουμε καλύτερα την “βαρύτητα” της
κατάταξης.

Σε αυτή την διπλωματική εργασία, δουλέυουμε κυρίως με το δημοφιλές μοντέλο των
Bradley-Terry-Luce (BTL) όπου κάθε αντικείμενο έχει ένα σχετικό σκορ που καθορίζει το
αποτέλεσμα της σύγκρισης σύμφωνα με μια δοκιμή Bernoulli. Αυτό είναι το Static BTL
μοντέλο, όπως έχει περιγραφεί στο [NOS17]. Στη συνέχεια, παρουσιάζουμε διάφορες
επεκτάσεις αυτού του βασικού μοντέλου. Ξεκινάμε με το Dynamic BTL μοντέλο, όπου
υποθέτουμε ότι τα σκορ εξελίσσονται με το πέρασμα του χρόνο. Αυτό εμφανίστηκε πρώτη
φορά στο [KT21]. Στην εργασία μας, επεκτείνουμε το μοντέλο τους, υποθέτοντας ότι τα
γραφήματα σύγκρισης είναι θετικά συσχετισμένα γραφήματα σύγκρισης. Αποδεικνύουμε
ότι ο αλγόριθμός τους λύνει επίσης και αυτό το επεκτεταμένο μοντέλο. Έπειτα ερευνούμε
το Adversarial BTL μοντέλο. Σε αυτό το μοντέλο υποθέτουμε ότι υπάρχει ένας αντίπαλος
(adversary) που λέει ψέμματα για κάποια από τα δυαδικά αποτελέσματα. Η πρώτη αναφορά
αυτού του μοντέλο ήταν στο [Aga+20], ωστόσο παρουσιάζουμε ένα ισχυρότερο θεώρημα
το οποιο εμπεριέχει το Static BTL μοντέλο. Τέλος εισάγουμε την έννοια του Dynamic
Adversarial BTL μοντέλου το οποιο γενικεύει και ενωποιεί κάθε ένα από τα προηγούμενα
μοντέλα. Επίσης συνδυάζουμε τον αλγόριθμο του dynamic μοντέλου με τον αλγόριθμο
του adversarial μοντέλου ώστε να λάβουμε έναν αποδοτικό αλγόριθμο για το γενικευμένο
μας μοντέλο.

Λέξεις Κλειδιά

Θεωρία Μάθησης, Στατιστική Μάθηση, Κατανομές Κατάταξης, Μοντέλο BTL, Στοχαστικές
Διεργασίες, Τυχαία Γραφήματα, Θεωρία Πιθανοτήτων
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Abstract

The question of ranking items from pairwise comparisons has been a subject of interest for
a very long time. This problem has many real world applications, such as recommendation
systems or ranking teams in a sports event. Moreover, in many cases it is desirable to have
a “score” for each item in order to understand the “intensity” of the ranking.

In this thesis, we are working with the popular Bradley-Terry-Luce (BTL) model in which
each item has an associated score which determines the outcome of a pairwise comparison
according to a Bernoulli trial. This is the Static BTL model as descibed in [NOS17]. We
describe the Spectral Ranking algorithm that gives efficient estimates of the BTL scores.
Next we present possible extensions of this base model. We start with the Dynamic BTL
model where we assume that the scores are evolving over time. This was first introduced in
[KT21]. In our work we extend their model by assuming positively correlated comparison
graphs. We prove that their algorithm also solves the extended setup. Next we are exploring
the Adversarial BTL model. In this model we assume that there is an adversary that lies for
some of the pairwise outcomes. The first mention of this model was in [Aga+20], however
we present a stronger theorem which also encapsulates the Static BTL model. Finally we
introduce the Dynamic Adversarial BTL model which generilizes and unifies each one of the
previous models. We also combine the algorithm for the dynamic model and the algorithm
for the adversarial model in order to give an efficient algorithm for our most general model.

Keywords

Learning Theory, Statistical Learning, Ranking Distributions, BTL Model, Stochastic Pro-
cesses, Random Graphs, Probability Theory
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Chapter 1

Introduction

1.1 Problem Formulation and Related Work

The problem that we are dealing with in this thesis can be stated as follows: Given 𝑛 items,
we want to order the items based on partial orderings provided through many samples.
Very often the available data that is presented to us is in the form of pairwise comparisons.
From such partial preferences in the form of comparisons, we frequently wish to deduce
not only the order of the underlying objects, but also the scores associated with the objects
themselves so as to deduce the intensity of the resulting preference order.

There are many real world applications where one would like to have global rankings from
such partial data:

• In rating responses of an online search engine to search queries ([Kaz11]).

• In marketing, we want to know the preferences of consumers about (many) products
([GCD81]).

• In machine learning we want to labeling data for the training of algorithms ([Hin+12],
[Ray+10], [Den+09]).

• In crowdsourcing platforms such as Amazon Mechanical Turk ([Kha+11], [LR11],
[Von+08]).

• In peer-grading in massive open online courses ([Pie+13]).

• In competitive sports such as chess or online gaming ([HMG06], [Ros07]).

• Counting the number of malaria parasites in an image of a blood smear ([LAF12]).

Most rating based systems rely on users to provide explicit numeric scores for their interests.
While these assumptions have led to a lot of theoretical research for item recommendations
based on matrix completion ([CR09], [KMO09], [NW12]) arguably numeric scores provided
by individual users are generally inconsistent. Furthermore, in a number of learning contexts
as illustrated above, explicit scores are not available.

Over the years, there have been proposed many distributions over ranking permutations:

1



2 Chapter 1. Introduction

• Plackett-Luce model ([Luc59], [Pla75]).

• Mallows model ([Mal57]).

• Bradley-Terry-Luce (BTL) model ([BT52], [Luc59]).

In this thesis we will focus in the BTL model. Suppose that we have 𝑛 items of interest. We
assume that there is a latent weight (or score) 𝐰∗ = (𝑤∗

1, … , 𝑤∗
𝑛)⊤ ∈ ℝ𝑛

+ associated with
each item 𝑖 ∈ [𝑛]. We also assume that each pair of items is being compared 𝐿 times. Let
𝑌𝑙

𝑖𝑗 denote the outcome of the 𝑙-th comparison of the pair 𝑖 and 𝑗, such that 𝑌𝑙
𝑖𝑗 = 1 if 𝑗 is

preferred over 𝑖 and 0 otherwise. Then the BTL model assumes that

𝑌𝑙
𝑖𝑗 ∼ Bernoulli⎛⎜

⎝

𝑤∗
𝑗

𝑤∗
𝑖 + 𝑤∗

𝑗

⎞⎟
⎠

.

Finally we create the comparison graph 𝐺 = ([𝑛], 𝐸), where [𝑛] represents the 𝑛 items and
𝑖 and 𝑗 are compared if and only if (𝑖, 𝑗) ∈ 𝐸. Note that the graph 𝐺 has to be assumed
connected, otherwise there would be no way to compare items that belong in different
connected components. Our aim is to estimate the BTL weights 𝐰 and rank the items
accordingly.

There have been many papers that explore and try to solve the above problem. To name a
few of them:

• In [For57] they provide an analysis based on Maximum Likelihood Estimators (MLE).

• In [AS11] they give a generalized Borda Count algorithm based on [Bor84].

• In [NOS17] they present an efficient algorithm that is based on random walks on
Markov Chains. In [APA18] they modify the previous algorithm for faster convergence.

While the model we just described has many good theoretical guarantees as well as applica-
tions ([TVV04]) it can be somewhat restrictive. Hence there have been numerous tries to
extend this frame work. We will focus in the following two.

Dynamic BTL. In the dynamic setting we assume that we have a time grid 𝒯 and the BTL
weights vary over time. Hence now we have a sequence of comparison grahps {𝐺𝑡} instead
of just one. Our aim is that given a time instance 𝑡 in the time grid 𝒯, estimate the weights
𝐰(𝑡). This model is essentially described in [KT21]. Another model that has a dynamic
element is the one proposed by [Bon+20]. In particular, they consider the logit version of
BTL model. One more related model appears in [LW21]. This model aims at recovering a
pairwise comparison matrix 𝑋(𝑇) at a time T from noisy linear measurements.

Adversarial BTL. In the adversarial setting we assume that there is an adversary with
complete knowledge of the BTL weights and the comparison graph and then he gives us a
corrupted version of both of them. This problem has been studied in [Aga+20]. Another
adversarial corruption model similar to the one that we have been discussing, has been
studied in the computer vision literature ([Gol+16], [HLV18]). All of these frameworks
are very closely related to robust estimation theory in classical statistics, in particular, the
𝜀−contamination model of Huber ([Hub65], [Hub92]) and its generalizations ([Dia+17],
[Dia+18], [Dia+19]).
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Finally this field of research on ranking distributions has been quite popular in the National
Technical University of Athens. Many student have explored and expanded this area in
recent years. For reference we cite some those works: [Kal19], [Mou19], [Sta20] and
[Mam22].

1.2 Our Contributions

The main contributions of this thesis are the following:

1. We propose a more general dynamic BTL model. We start by introducing the notion of
positively correlated random graphs and we assume that these represent the compar-
isons graphs. We prove that the algorithm given in [KT21] works also in our setting
and we prove the corresponding theorem.

2. We modify the algorithm presented in [Aga+20] and we prove an appropriate theorem
in this setting. With our result it is clear that when we have no corruption we get the
base model and the base result.

3. Finally we propose a novel BTL setting, where we combine the dynamic setting and the
adversarial setting. This model has as special cases all the other models we will discuss.
Finally, we give an algorithm that solves the problem and we prove a generalization
of the theorem presented in the dynamic setting and the theorem presented in the
adversarial setting.

1.3 Organization of the thesis

Chapter 2: Mathematical Tools In this chapter we lay all the necessary mathematical
foundations for the following chapters. We start with a brief overview of the basic facts of
Markov chains. Next we review the basic concentration inequalities as well as others that
are based on sub Gaussian random variables. We also introduce the notion of Erdős-Rényi
random graphs. Finally we construct a new family of such random graph, called positively
correlated random graphs, that we are using for some of the models of the following
chapters.

Chapter 3: The Static BTL Model. In this chapter we introduce the classical (static)
BTL model for global rankings from pairwise comparisons, as described in [NOS17] and
[Che+19]. We begin by formulating the problem setting and we explain the Spectral
Ranking Algorithm. Next we prove the main theorem of this framework. In the end we
verify the correctness of the algorithm with numerical experiments.1

Chapter 4: The Dynamic BTL Model In this chapter we discuss a possible generalization
of the Static BTL model. In the dynamic setting we add the element of time in our problem.
In particular, the BTL weights vary over a time grid and the comparison graphs are all
independent. Building upon the work of [KT21] we make the weaker assumption that
the graphs are positively correlated, a construction that we saw in Chapter 2. Next we
modify the Spectral Ranking algorithm into our setup and we prove the main theorem of
this framework. Finally we present novel numerical experiments.

1We follow the generation of synthetic data as in [NOS17] but we have written our own code (in Python).
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Chapter 5: The Static Adversarial BTL Model In this chapter we explore another possible
generalization of the Static BTL model. In this setting, we assume that there is an adversary
that lies about some of the outcomes of the pairwise comparisons. Based on the work of
[Aga+20], we provide an algorithm that solves the problem. Moreover, we prove a new
theorem that has as a special case the theorem from Chapter 3.

Chapter 6: The Dynamic Adversarial BTL Model In this chapter we combine the models
that we described in Chapter 4 and Chapter 5. We explain the whole framework in detail and
we combine some of the previous algorithms in order to give a novel algorithm that solves
the problem in the most general case. Finally we provide a new theorem that encapsulates
all the main theorems of the previous models as special cases.

Appendix A: Technical Tools In this chapter we present detailed proofs for the results
from the main chapters. In particular, we provide two results about the ℓ2 norms of a special
kind of random matrices and vectors. In addition, we introduce the notion of the spectral
graph and we prove a useful proposition. Finally, we define the ‖⋅‖𝝅 norm and using this
norm we formulate and prove the Eigenvector Perturbation theorem.

Notation

For the mathematical analysis of this thesis we are going to use the following notation.

• For any natural number 𝑛, let [𝑛] = {1, … , 𝑛}.

• With lower case, bold-faced letters we denote vectors, e.g. 𝐯.

• With upper case, bold-faced letters we denote matrices, e.g. 𝐀.

• With 𝐴𝑖𝑗 we denote the (𝑖, 𝑗) element of matrix 𝐀.

• We use 𝑐1, 𝑐2, 𝑘1, 𝑘2, 𝐶1, 𝐶2, … to denote absolute constants.

• With ‖𝐯‖2 we denote the ℓ2 norm of the vector 𝐯, and with ‖𝐯‖1 we denote the ℓ1 norm.

• We use ‖𝐀‖2 to denote the spectral norm of matrix 𝐀 and ‖𝐀‖𝐹 to denote the Frobenius
norm.



Chapter 2

Mathematical Tools

In this chapter we are going to review some basic mathematical results from probability
theory and stochastic processes as well as from random graphs theory. We are going to use
them later in many proofs.

2.1 Markov Chains

In this section we are going to give a brief overview of the basics of discrete time Markov
chains. We are going to use these results all the time in the subsequent chapters. The
contents of this section are based on [LP17] and [Lou15].

Definition 2.1.1. Let Ω be a finite state space. A sequence of random variables 𝑋0, 𝑋1, …
is a Markov chain with state space Ω if for all 𝑣0, … , 𝑣𝑛−1, 𝑥, 𝑦 ∈ Ω and all 𝑛 ∈ ℕ we have
that

ℙ [𝑋𝑛+1 = 𝑦 ∣ 𝑋0 = 𝑣0, … , 𝑋𝑛−1 = 𝑣𝑛−1, 𝑋𝑛 = 𝑥] = ℙ [𝑋𝑛+1 = 𝑦 ∣ 𝑋𝑛 = 𝑥] . (2.1)

Remark 2.1.2. A Markov chain is called time-homogeneous if the right hand side of Equa-
tion (2.1) does not depend from 𝑛. This is the case for most applications. Then we can
define the probability transition matrix 𝐏 as

𝑃𝑥,𝑦 = ℙ [𝑋𝑛+1 = 𝑦 ∣ 𝑋𝑛 = 𝑥] .

From now on when we use the term “Markov chain” we imply that it is a time homogeneous
Markov chain. Note that 𝐏 is a stochastic matrix, i.e.

∑
𝑦∈Ω

𝑃𝑥,𝑦 = 1.

Definition 2.1.3. Let Ω = {𝑥1, … , 𝑥𝑛}. Then the distribution at time 𝑛 is given by

𝝅𝑛 = (𝜋𝑛(𝑥1), … , 𝜋𝑛(𝑥𝑛)) ,

where
𝜋𝑛(𝑦) = ℙ [𝑋𝑛 = 𝑦] .

It is easy to prove that 𝝅𝑛+1 = 𝝅𝑛𝐏 for all 𝑛 ∈ ℕ. These are known as the Chapman-
Kolmogorov equations.

5
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Definition 2.1.4. A Markov chain in a finite state space Ω is:

• irreducible if for any two states 𝑥, 𝑦 ∈ Ω, there exists a time step 𝑛 such that 𝑃(𝑛)(𝑥, 𝑦) >
0.

• aperiodic if, for any state 𝑥, it holds that gcd{𝑛 ∶ 𝑃(𝑛)(𝑥, 𝑥) > 0} = 1.

• ergodic if it is both irreducible and aperiodic.

Definition 2.1.5. A stationary distribution 𝝅 ∈ ℝ𝑛 for a (finite) Markov chain with transition
matrix 𝐏 is defined as the leading left eigenvector of 𝐏 ∈ ℝ𝑛×𝑛

𝝅𝐏 = 𝝅.

Theorem 2.1.6. An ergodic Markov chain has a unique stationary distribution.

Theorem 2.1.7. For a finite ergodic Markov we have the (entrywise) convergence

lim𝑛→∞ 𝝅𝑛 = 𝝅.

Definition 2.1.8. A Markov chain is time reversible if there exists a distribution 𝝅 that
satisfies the detailed balanced equations:

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω.

Then 𝝅 is the stationary distribution.

2.2 Concentration Inequalities

All of the algorithms that we are going to work with, are randomized algorithms which
means that they produce the correct result most of the time, i.e. with high probablity. In
order to analyze these algorithms we are going to need the following measure concentration
inequalities.

First we begin with the elementary Markov’s inequality.

Theorem 2.2.1 (Markov). Let 𝑋 ≥ 0 be a non negative random variable and let 𝑎 > 0 be a
real number. Then we have

ℙ [𝑋 ≥ 𝑎] ≤
𝔼 [𝑋]

𝑎 .

An application of Markov’s inequality is the Chernoff bound.

Theorem 2.2.2 (Chernoff). Let 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 where 𝑋1, … , 𝑋𝑛 are independent random

variables such that 𝑋𝑖 ∼ Be (𝑝𝑖). Note that 𝜇 = 𝔼 [𝑆𝑛] = ∑𝑛
𝑖=1 𝑝𝑖. Then

ℙ [∣𝑆𝑛 − 𝜇∣ > 𝑡𝜇] ≤ 2 exp{
−𝜇𝑡2

3 } ,

for 𝑡 ∈ (0, 1).

A powerful and useful generalization of the Chernoff bound is Hoeffding’s inequality.
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Theorem 2.2.3 (Hoeffding, [Hoe63]). Let 𝑋1, … , 𝑋𝑛 be independent random variables such
that 𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖]. Also let 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖. Then

ℙ [𝑆𝑛 − 𝔼 [𝑆𝑛] > 𝑡] ≤ exp
⎧{
⎨{⎩

−2𝑡2

∑𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖)

2

⎫}
⎬}⎭

and

ℙ [∣𝑆𝑛 − 𝔼 [𝑆𝑛]∣ > 𝑡] ≤ 2 exp
⎧{
⎨{⎩

−2𝑡2

∑𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖)

2

⎫}
⎬}⎭

for all 𝑡 > 0.

Another generalization of the Chernoff bound as well as Hoeffding’s inequality is Bernstein’s
inequalities. It is actually a family of inequalities but here we present the following.

Theorem 2.2.4 (Bernstein, [Ber37]). Let 𝑋1, … , 𝑋𝑛 ∈ ℝ be independent random variables,
each satisfying 𝔼 [𝑋𝑖] = 0 and ∣𝑋𝑖∣ ≤ 𝐵 almost surely. Then for any 𝑡 > 0

ℙ ⎡⎢
⎣
∣∣∣∣

𝑛
∑
𝑖=1

𝑋𝑖
∣∣∣∣
> 𝑡⎤⎥

⎦
≤ 2 exp

⎧{
⎨{⎩

−3𝑡2

6 ∑𝑛
𝑖=1 𝔼 [𝑋2

𝑖 ] + 2𝐵𝑡

⎫}
⎬}⎭

.

Furthermore, there is a generalization of the previous inequality for random matrices.

Theorem 2.2.5 (Matrix Bernstein Inequality, [Tro12]: Theorem 1.5). Let 𝑍1, … , 𝑍𝑛 ∈
ℝ𝑑1×𝑑2 be independent random matrices, each satisfying 𝔼 [𝑍𝑖] = 0 and ∥𝑍𝑖∥2 ≤ 𝐵 almost
surely. Then for any 𝑡 > 0

ℙ ⎡⎢
⎣

∥∥∥∥

𝑛
∑
𝑖=1

𝑍𝑖
∥∥∥∥2

> 𝑡⎤⎥
⎦

≤ (𝑑1 + 𝑑2) exp{
−3𝑡2

6𝜈 + 2𝐵𝑡} ,

where 𝜈 = max {∥𝔼 [∑𝑛
𝑖=1 𝑍⊤

𝑖 𝑍𝑖]∥2 , ∥𝔼 [∑𝑛
𝑖=1 𝑍𝑖𝑍⊤

𝑖 ]∥2}.

2.2.1 Sub-Gaussian Random Variables

Sometimes we need more refined results about measure concentration. Thus we need to
strengthen our assumptions. One very common assumption that occurs quite naturally is to
let the random variables be sub-Gaussian.

Definition 2.2.6. A random variable 𝑋 ∈ ℝ is said to be sub-Gaussian with variance proxy
𝜎2 > 0 if

ℙ [|𝑋| > 𝑡] ≤ 2 exp(
−𝑡2

2𝜎2 ) , ∀𝑡 > 0.

In this case we write 𝑋 ∼ subG (𝜎2).

Sub-Gaussian random variables have “strong tail decay”. The next lemma makes this claim
precise.

Lemma 2.2.7. Let 𝑋 ∼ subG (𝜎2). Then for any positive integer 𝑝 ≥ 1 we have

𝔼 |𝑋|𝑝 ≤ (2𝜎2)𝑝/2 𝑝Γ (𝑝/2) .

In particular,
(𝔼 |𝑋|𝑝)1/𝑝 ≤ √𝑝𝜎𝑒1/𝑒, 𝑝 ≥ 2,

and 𝔼 |𝑋| ≤ 𝜎√2𝜋 and 𝔼 𝑋2 ≤ 4𝜎2.
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Proof. We have

𝔼 |𝑋|𝑝 = ∫
+∞

0
ℙ [|𝑋|𝑝 > 𝑡] 𝑑𝑡

= ∫
+∞

0
ℙ [|𝑋| > 𝑡1/𝑝] 𝑑𝑡

≤ 2 ∫
+∞

0
𝑒

−𝑡2/𝑝

2𝜎2 𝑑𝑡

= (2𝜎2)𝑝/2 𝑝 ∫
+∞

0
𝑒−𝑢𝑢𝑝/2−1𝑑𝑢, 𝑢 =

𝑡2/𝑝

2𝜎2

= (2𝜎2)𝑝/2 𝑝Γ (𝑝/2) .

The second statement follows from Γ (𝑝/2) ≤ (𝑝/2)𝑝/2 and 𝑝1/𝑝 ≤ 𝑒1/𝑒 for 𝑝 ≥ 2. It yields

((2𝜎2)𝑝/2 𝑝Γ (𝑝/2))
1/𝑝

≤ 𝑝1/𝑝√2𝜎2𝑝
2 ≤ 𝑒1/𝑒𝜎√𝑝.

Moreover, for 𝑝 = 1, we have √2Γ (1/2) = √2𝜋 and for 𝑝 = 2 it is Γ (1) = 1.

The previous lemma motivates the following definition.

Definition 2.2.8. Let 𝑋 be a random variable. The sub-Gaussian norm ‖⋅‖𝜓2
is defined as

‖𝑋‖𝜓2
= sup

𝑝≥1
𝑝−1/2 (𝔼 |𝑋|𝑝)1/𝑝 .

Note that if 𝑋 ∼ subG (𝜎2), then ‖𝑋‖𝜓2
≤ 3𝜎 < +∞.

One of the most powerful inequalities regarding sub-Gaussian random variables is the
Hanson-Wright inequality.

Theorem 2.2.9 (Hanson-Wright, [RV13]: Theorem 1.1). Let 𝑋 = (𝑋1, … , 𝑋𝑛) ∈ ℝ𝑛 be a
random vector with independent components 𝑋𝑖 which satisfy 𝔼 [𝑋𝑖] = 0 and ∥𝑋𝑖∥𝜓2

≤ 𝐾, i.e.
each component 𝑋𝑖 is a sub-Gaussian random variable. Let 𝐴 be a 𝑛 × 𝑛 matrix. Then, for
every 𝑡 > 0,

ℙ [∣𝑋⊤𝐴𝑋 − 𝔼 [𝑋⊤𝐴𝑋]∣ > 𝑡] ≤ 2 exp
⎧{
⎨{⎩

−𝑐min⎛⎜⎜
⎝

𝑡2

𝐾4 ∥𝐴∥2
𝐹

,
𝑡

𝐾2 ∥𝐴∥2

⎞⎟⎟
⎠

⎫}
⎬}⎭

,

for some constant 𝑐 > 0.

Corollary 2.2.10. Let 𝑋 = (𝑋1, … , 𝑋𝑛) ∈ ℝ𝑛 be a random vector with independent compo-
nents 𝑋𝑖 which satisfy 𝔼 [𝑋𝑖] = 0 and ∥𝑋𝑖∥𝜓2

≤ 𝐾. Then, for every 𝑡 > 0,

ℙ ⎡⎢
⎣
∣∣∣∣

𝑛
∑
𝑖=1

𝑋2
𝑖 − 𝔼 ⎡⎢

⎣

𝑛
∑
𝑖=1

𝑋2
𝑖
⎤⎥
⎦
∣∣∣∣
> 𝑡⎤⎥

⎦
≤ 2 exp {−

𝑐𝑡
𝐾2 min(

𝑡
𝑛𝐾2 , 1)} ,

for some constant 𝑐 > 0.

Proof. Apply Theorem 2.2.9 with 𝐴 = 𝐼𝑛.
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2.3 Erdős-Rényi Random Graphs

In all of the models that we are going to see, it will always exist a random graph. In particular,
we are going to encounter the Erdős-Rényi random graph. We start with a definition.

Definition 2.3.1 (Erdős-Rényi random graph, [FK16]: Sec 1.1). Fix 0 ≤ 𝑝 ≤ 1. Start with
an empty graph with vertex set [𝑛] and perform (𝑛

2) Bernoulli experiments inserting edges
independently with probability 𝑝.

Notation 2.3.2. We use 𝐺 ∼ 𝒢(𝑛, 𝑝) to denote that 𝐺 is an Erdős-Rényi random graph on 𝑛
vertices with probability 𝑝.

One of the most important properties of this class of random graphs is given by the following
theorem.

Theorem 2.3.3 (Erdős-Rényi, [ER60]). Let 𝐺 ∼ 𝒢(𝑛, 𝑝) be an Erdős-Rényi graph. If 𝑝 ≥ 𝑐 log𝑛
𝑛

for some sufficiently large constant 𝑐 > 1, then 𝐺 is almost surely connected.

Another useful result that we are going to use, is the following lemma.

Lemma 2.3.4 ([KT21]: Lemma 11). Let 𝐺 ∼ 𝒢(𝑛, 𝑝) be an Erdős-Rényi graph. Let

1. 𝒜1 = {𝑛𝑝
2 ≤ 𝑑min ≤ 𝑑max ≤ 3𝑛𝑝

2 },

2. 𝒜3 = {|𝐸| ≤ 2𝑛2𝑝},

3. 𝒜2 = {𝜉 > 1
2}, where 𝜉 = 𝜉 (𝐺) is the spectral gap1 of the graph 𝐺.

Then there is a constant 𝑐 > 1 such that if 𝑝 ≥ 𝑐 log𝑛
𝑛 , then ℙ [𝒜𝑖] ≥ 1−𝑂 (𝑛−10) for 𝑖 = 1, 2, 3.

2.3.1 Time dependent Erdős-Rényi graphs

In this section we are going to construct an evolution of random graphs through time.

Construction 2.3.5. Let 𝐺1 ∼ 𝒢(𝑛, 𝑝1) be an Erdős-Rényi random graph. We will inductively
construct a finite sequence {𝐺𝑡}𝑇

𝑡=1 of “correlated” Erdős-Rényi graphs.

Suppose that we already have 𝐺𝑡 = ([𝑛], 𝐸𝑡). We construct 𝐺𝑡+1 as follows: The set of
vertices of 𝐺𝑡+1 is the set [𝑛] and let 𝛼𝑡, 𝑝𝑡+1 ∈ [0, 1]. We call 𝑎𝑡 the similarity coefficient
of the graph 𝐺𝑡+1 with respect to the graph 𝐺𝑡. Let (𝑖, 𝑗) be a pair of vertices. We have to
decide whether this pair will be an edge in 𝐺𝑡+1 or not. Firstly, we look at the state of (𝑖, 𝑗)
in 𝐺𝑡, i.e. we check whether (𝑖, 𝑗) ∈ 𝐸𝑡 or (𝑖, 𝑗) ∉ 𝐸𝑡. Then with probability 𝛼𝑡 ∈ [0, 1] we
keep the same state in 𝐺𝑡+1 and with probability 1 − 𝛼𝑡 we change the pair’s state according
to the rule: with probability 𝑝𝑡+1 we add the edge (𝑖, 𝑗) ∈ 𝐸𝑡+1 and with probability 1 − 𝑝𝑡+1
we don’t add the edge. We do this procedure for all possible pairs of vertices. Hence we
construct a graph 𝐺𝑡+1 = ([𝑛], 𝐸𝑡+1).

Remark 2.3.6. The Construction 2.3.5 is essentially the samewith the construction described
in [ODo14]: Chapter 2.4.

Remark 2.3.7. The graph 𝐺𝑡+1 satisfies the following properties:
1See: Definition A.2.1
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1. By construction we have the Markov property:

ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∈ 𝐸𝑡, … , (𝑖, 𝑗) ∈ 𝐸1] = ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∈ 𝐸𝑡]
ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡+1|(𝑖, 𝑗) ∉ 𝐸𝑡, … , (𝑖, 𝑗) ∉ 𝐸1] = ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡+1|(𝑖, 𝑗) ∉ 𝐸𝑡]

2. It is easy to see that:

ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∈ 𝐸𝑡] = 𝛼𝑡 + (1 − 𝛼𝑡) 𝑝𝑡+1

ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡+1|(𝑖, 𝑗) ∈ 𝐸𝑡] = (1 − 𝛼𝑡) (1 − 𝑝𝑡+1)
ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∉ 𝐸𝑡] = (1 − 𝛼𝑡) 𝑝𝑡+1

ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡+1|(𝑖, 𝑗) ∉ 𝐸𝑡] = 𝛼𝑡 + (1 − 𝛼𝑡) (1 − 𝑝𝑡+1)

3. Note that 𝐺𝑡+1 ∼ 𝒢 (𝑛, 𝛼𝑡𝑝𝑡 + (1 − 𝛼𝑡) 𝑝𝑡+1). Indeed

ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1] = ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡] ⋅ ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∈ 𝐸𝑡]
+ ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡] ⋅ ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1|(𝑖, 𝑗) ∉ 𝐸𝑡]

= 𝑝𝑡 (𝛼𝑡 + (1 − 𝛼𝑡) 𝑝𝑡+1) + (1 − 𝑝𝑡) (1 − 𝛼𝑡) 𝑝𝑡+1

= 𝛼𝑡𝑝𝑡 + (1 − 𝛼𝑡) 𝑝𝑡+1

4. We have the following special cases:

• If 𝛼𝑡 = 0 then 𝐺𝑡+1 ∼ 𝒢(𝑛, 𝑝𝑡+1) and the random graphs 𝐺𝑡 and 𝐺𝑡+1 are
independent, i.e. ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1 ∩ 𝐸𝑡] = ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡+1] ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡].

• If 𝛼𝑡 = 1 then 𝐺𝑡+1 = 𝐺𝑡 and obviously 𝐺𝑡+1 ∼ 𝒢(𝑛, 𝑝𝑡).

The union of all the graphs 𝐺𝑡 constructed above has some interesting properties.

Proposition 2.3.8. Let {𝐺𝑡}𝑇
𝑡=1 be a finite sequence of random graphs, constructed as above.

Then the union graph 𝐺 = ∪𝑇
𝑡=1𝐺𝑡 is an Erdős-Rényi graph with probability

𝑝 = 1 − (1 − 𝑝1)
𝑇−1
∏
𝑡=1

(1 − (1 − 𝛼𝑡) 𝑝𝑡+1) .

Proof. We have

ℙ [(𝑖, 𝑗) ∈
𝑇
⋃
𝑡=1

𝐸𝑡] = 1 − ℙ [(𝑖, 𝑗) ∉
𝑇
⋂
𝑡=1

𝐸𝑡]

= 1 −
𝑇

∏
𝑡=1

ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡|(𝑖, 𝑗) ∉ 𝐸𝑡−1, … , (𝑖, 𝑗) ∉ 𝐸1]

= 1 − ℙ [(𝑖, 𝑗) ∉ 𝐸1]
𝑇

∏
𝑡=2

ℙ [(𝑖, 𝑗) ∉ 𝐸𝑡|(𝑖, 𝑗) ∉ 𝐸𝑡−1]

= 1 − (1 − 𝑝1)
𝑇

∏
𝑡=2

(𝛼𝑡−1 + (1 − 𝛼𝑡−1) (1 − 𝑝𝑡))

= 1 − (1 − 𝑝1)
𝑇−1
∏
𝑡=1

(1 − (1 − 𝛼𝑡) 𝑝𝑡+1) .
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Proposition 2.3.9. Let {𝐺𝑡}𝑇
𝑡=1 be a finite sequence of random graphs, constructed as above.

Suppose that

𝑝1 +
𝑇−1
∑
𝑡=1

(1 − 𝑎𝑡) 𝑝𝑡+1 ≥ log𝑛 − log (𝑛 − 𝑐 log𝑛) ,

for some sufficiently large constant 𝑐 > 1. Then the union graph 𝐺 = ∪𝑇
𝑡=1 is almost surely

connected.

Proof. By Proposition 2.3.8 we have that 𝐺 ∼ 𝒢(𝑛, 𝑝) with

𝑝 = 1 − (1 − 𝑝1)
𝑇−1
∏
𝑡=1

(1 − (1 − 𝛼𝑡) 𝑝𝑡+1) .

Hence by Theorem 2.3.3 it is enough to prove that 𝑝 ≥ 𝑐 log𝑛
𝑛 . We have

𝑝 = 1 − (1 − 𝑝1)
𝑇−1
∏
𝑡=1

(1 − (1 − 𝛼𝑡) 𝑝𝑡+1)

≥ 1 − 𝑒−𝑝1
𝑇−1
∏
𝑡=1

𝑒−(1−𝛼𝑡)𝑝𝑡+1

= 1 − 𝑒−𝑝1−∑𝑇−1
𝑡=1 (1−𝛼𝑡)𝑝𝑡+1

> 1 − 𝑒−(log𝑛−log(𝑛−𝑐 log𝑛))

= 1 −
𝑛 − 𝑐 log𝑛

𝑛

=
𝑐 log𝑛

𝑛 ,

as desired.

2.4 Positively Correlated Erdős-Rényi Graphs

In this section we present an interesting special case of Construction 2.3.5. We are going to
use this new concept in our models in Chapter 4 and in Chapter 6.

In this special case we assume that all the similarity coefficients 𝛼𝑡 are equal. In particular,
let {𝐺1}𝑇

𝑡=1 be a finite sequence constructed as previously, with 𝛼𝑡 = 𝛼 for all 𝑡 = 1, … , 𝑇 − 1.
Then we have the following two edge cases:

• If 𝛼 = 0, then 𝐺𝑡 ∼ 𝒢(𝑛, 𝑝𝑡) for all 𝑡 = 1, … , 𝑇 and moreover all the pairs 𝐺𝑡, 𝐺𝑡+1 are
independent random graphs.

• If 𝛼 = 1, then 𝐺𝑡 = 𝐺1 ∼ 𝒢(𝑛, 𝑝1) for all 𝑡 = 1, … , 𝑇.

Then we have the following definition.

Definition 2.4.1. Let {𝐺1}𝑇
𝑡=1 be a finite sequence constructed as previously, with 𝛼𝑡 = 𝛼

for all 𝑡 = 1, … , 𝑇 − 1. If 𝛼 ∈ [0, 1], then we call 𝐺𝑡’s positively correlated random graphs.

Using the results in previous section we get the following corollary.

Corollary 2.4.2. Let {𝐺1}𝑇
𝑡=1 be a finite sequence of positively correlated random graphs. If

∑𝑇
𝑡=1 𝑝𝑡 ≥ log𝑛−log(𝑛−𝑐 log𝑛)

1−𝛼 then the union graph 𝐺 = ∪𝑇
𝑡=1 is almost surely connected. In

particular if 𝑝𝑡 ≥ log𝑛−log(𝑛−𝑐 log𝑛)
(1−𝛼)𝑇 for all 𝑡 = 1, … , 𝑇, then 𝐺 is almost surely connected.
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Proof. It follows from Proposition 2.3.9, since

𝑝1 +
𝑇−1
∑
𝑡=1

(1 − 𝑎𝑡)𝑝𝑡+1 ≥ (1 − 𝛼)
𝑇

∑
𝑡=1

𝑝𝑡

≥ log𝑛 − log(𝑛 − 𝑐 log𝑛).



Chapter 3

The Static BTL Model

In this chapter we aim to formally present the basic problem setup of ranking from binary
comparisons. Furthermore, we introduce the Spectral Ranking Algorithm, an attempt at
solving the problem efficiently. Subsequently, we provide theoretical guarantees that the
algorithm works with high probability. In the end we show the effectiveness of the algorithm
through numerical experimentation.

3.1 Problem Setup

Preference Scores. When comparing pairs of items from 𝑛 items of interest, represented
as [𝑛] = {1, … , 𝑛}, the Bradley-Terry-Luce (BTL) model assumes that there is a latent
weight (or score) 𝐰∗ = (𝑤∗

1, … , 𝑤∗
𝑛)⊤ ∈ ℝ𝑛

+ associated with each item 𝑖 ∈ [𝑛]. The outcome
of a comparison for pair of items 𝑖 and 𝑗 is determined only by the corresponding weights
𝑤∗

𝑖 and 𝑤∗
𝑗 . We also introduce the condition number as

𝑏 ∶=
𝑤∗

max
𝑤∗

min
.

We assume that 𝑏 is a fixed constant independent of 𝑛.

Comparison Graph. We assume that the comparisons between items are governed by a
comparison graph 𝐺 = ([𝑛], 𝐸), where [𝑛] represents the 𝑛 items of interest. The items 𝑖
and 𝑗 are compared if and only if (𝑖, 𝑗) ∈ 𝐸. The set of edges 𝐸 is taken to be a subset of
{(𝑖, 𝑗) ∈ [𝑛] × [𝑛] ∣ 𝑖 < 𝑗}. Throughout this chapter we assume that 𝐺 is drawn from the
Erdős-Rényi random graph 𝒢(𝑛, 𝑝). Of course, the graph 𝐺 has to be connected, otherwise
there would be no way to compare items that belong in different connected components.
Hence by Theorem 2.3.3, from now on we assume that 𝑝 ≥ 𝑐 log𝑛

𝑛 for a sufficiently large
constant 𝑐 > 1.

Pairwise Comparisons. For each (𝑖, 𝑗) ∈ 𝐸, we assume that 𝐿 independent comparisons
take place between items 𝑖 and 𝑗. Let 𝑌𝑙

𝑖𝑗 denote the outcome of the 𝑙-th comparison of the

13
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pair 𝑖 and 𝑗, such that 𝑌𝑙
𝑖𝑗 = 1 if 𝑗 is preferred over 𝑖 and 0 otherwise. Then the BTL model

assumes that

𝑌𝑙
𝑖𝑗 ∼ Bernoulli⎛⎜

⎝

𝑤∗
𝑗

𝑤∗
𝑖 + 𝑤∗

𝑗

⎞⎟
⎠

Furthermore, it is assumed that the random variables 𝑌𝑙
𝑖𝑗 are independent of one another

for all 𝑖, 𝑗 and 𝑙. Now let 𝐲 = {𝑦𝑖𝑗|(𝑖, 𝑗) ∈ 𝐸}, where

𝑦𝑖𝑗 =
1
𝐿

𝐿
∑
𝑙=1

𝑌𝑙
𝑖𝑗

is the fraction of wins of 𝑗 over 𝑖. By convention, we set 𝑌𝑙
𝑗𝑖 = 1 − 𝑌𝑙

𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐸. Then
obviously 𝑦𝑗𝑖 = 1 − 𝑦𝑖𝑗. In the same fashion, we denote

𝑦∗
𝑖𝑗 =

𝑤∗
𝑗

𝑤∗
𝑖 + 𝑤∗

𝑗

and 𝑦∗
𝑗𝑖 = 1 − 𝑦∗

𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐸. Now we can turn the comparison graph 𝐺 into a weighted
graph by assigning the weight 𝑦𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐸. Note that the weighted graph 𝐺 contains
all the information of our data.

Goal. The BTL model as we have described it so far is invariant under the scaling of the
weights 𝐰∗, so an 𝑛-dimensional representation of the scores is not unique. To get a unique
representation we let

𝝅∗ =
𝐰∗

‖𝐰∗‖1
.

The goal is to learn (or at least estimate) the normalized weight vector 𝝅∗ and then rank all
the items according to 𝝅∗.

3.2 Spectral Ranking Algorithm

As we have already mentioned there are many approaches that attempt to solve the above
problem. Here we present one of the most recent and most powerful attempts, the Spectral
Ranking Algorithm. The idea, which shares many similarities with the PageRank Algorithm
[Pag+99], is to create a random walk on the comparison graph 𝐺 and then calculate the
stationary distribution of this random process.

In particular, consider the following stochastic matrices: Let 𝐏 = [𝑃𝑖𝑗] ∈ ℝ𝑛×𝑛
+ be the

comparison transition matrix with

𝑃𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

𝑦𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦𝑖𝑘 if 𝑖 = 𝑗

0 otherwise,

where 𝑑𝑚𝑎𝑥 is the maximum degree of the comparison graph 𝐺 and 𝑁𝐺(𝑖) is the set of
neighbors of the node 𝑖 in 𝐺.
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Also let 𝐏∗ = [𝑃∗
𝑖𝑗] ∈ ℝ𝑛×𝑛

+ be the preference transition matrix with

𝑃∗
𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

𝑦∗
𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦∗

𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

Note that 𝔼 [𝑦𝑖𝑗] = 𝑦∗
𝑖𝑗, so by the Strong Law of Large Numbers, 𝑦𝑖𝑗 → 𝑦∗

𝑖𝑗 almost surely
when 𝐿 → ∞. Similarly for the transition matrices (the convergence is entrywise) 𝐏 → 𝐏∗.
Moreover it is easy to see that the normalized weight vector 𝝅∗ = (𝜋∗

1 , … , 𝜋∗
𝑛)⊤ ∈ ℝ𝑛

+ is
the stationary distribution of the Markov chain induced by the matrix 𝐏∗, since it satisfies
the detailed balance equation 𝜋∗

𝑖 𝑃∗
𝑖𝑗 = 𝜋∗

𝑗 𝑃∗
𝑗𝑖 for all 𝑖, 𝑗 ∈ [𝑛]. As a result, it is reasonable to

expect that the stationary distribution of the empirical version 𝐏 to form a good estimate of
𝝅∗, provided the sample size 𝐿 is sufficiently large.

This motivates the following algorithm:

Algorithm 1: Spectral Ranking Algorithm for the Static BTL Model.
Input: The comparison graph 𝐺 and the statistics 𝐲.
Output: An estimate 𝝅 ∈ ℝ𝑛

+ of the true normalized weight vector 𝝅∗.

1 Compute the comparison transition matrix 𝐏 as shown above.
2 Compute the leading left eigenvector 𝝅 of 𝐏.

3.3 Main Result

The purpose of this section is to prove that the Spectral Ranking Algorithm actually works,
i.e. it provides a good estimate of 𝝅∗.

Theorem 3.3.1 ([NOS17]: Theorem 2, [Che+19]: Theorem 9). Suppose that 𝑝 ≥ 𝑘1
log𝑛

𝑛
for a suitable constant 𝑘1 > 0. Then there is a constant 𝐶1 > 0 such that if

𝐿 ≥ 𝑐1
𝑏7 log𝑛

𝑛𝑝 , (3.1)

for some constant 𝑐1 > 0, then with probability at least 1 − 1
poly(𝑛) , one has

‖𝝅 − 𝝅∗‖2
‖𝝅∗‖2

≤ 𝐶1
𝑏9/2

√𝑛𝑝𝐿
. (3.2)

Notation 3.3.2. Throughout this section let 𝚫 = 𝐏 − 𝐏∗.

We need the following lemmas.

Lemma 3.3.3 ([NOS17]: Lemma 3). There exist a constant 𝐶1 such that with probability at
least 1 − 1

poly(𝑛) , one has

‖𝚫‖2 ≤ 𝐶1√ log𝑛
𝐿𝑑max
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Proof. This is a direct application of Proposition A.1.1: Let 𝐿𝑖𝑗 = 𝐿 and

𝑍𝑙
𝑖𝑗 =

⎧{
⎨{⎩

1
𝐿𝑑max

(𝑌𝑙
𝑖𝑗 − 𝑦∗

𝑖𝑗) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

0 otherwise,

where 𝑌𝑙
𝑖𝑗 ∼ Bernoulli (𝑦∗

𝑖𝑗). Then 𝐵 = 1
𝐿𝑑max

and 𝑁max = 𝑑max and we get exactly what we
want.

Lemma 3.3.4 ([Che+19]: Section C.2). Since 𝑛 ≥ 𝑐1
𝑝 log𝑛 we have that with probability at

least 1 − 1
poly(𝑛) it holds

∥𝝅∗⊤ (𝐏 − 𝐏∗)∥2 ≤ 𝐶2
𝑏

√𝐿𝑑max

‖𝝅∗‖2 .

Proof. This is a direct application of Proposition A.1.2: Construct 𝚫 as in the previous proof
and let 𝐚 = 𝝅∗. Then 𝜑 = 𝑏 and we get exactly what we want.

Lemma 3.3.5 ([NOS17]: Lemma 4). If

𝐿 ≥ 𝐶3
𝑏7𝑑max

𝜉2𝑑2
min

log𝑛,

for some sufficiently large constant 𝐶3 > 0, then with probability at least 1 − 1
poly(𝑛) we have

𝛾 ∶= 1 − 𝜆max (𝐏∗) − ‖𝐏 − 𝐏∗‖𝝅∗ ≥
𝜉𝑑min

4𝑏3𝑑max
,

where 𝜉 is the spectral gap of the graph 𝐺.

Proof. By Proposition A.2.2 with (𝐏, 𝝅) = (𝐏∗, 𝝅∗), we have that

𝛾 ∶= 1 − 𝜆max (𝐏∗) − ‖𝐏 − 𝐏∗‖𝝅∗ ≥
𝜉𝑑min

2𝑏3𝑑max
− ‖𝐏 − 𝐏∗‖𝝅∗ .

But by the innitial assumption on 𝐿 and Lemma 3.3.3, with probability at least 1 − 1
poly(𝑛)

we have,

‖𝐏 − 𝐏∗‖2 ≤ √𝑏 ‖𝚫‖𝝅∗

≤ 𝐶1√𝑏 log𝑛
𝐿𝑑max

≤
𝜉𝑑min

4𝑏3𝑑max
.

As a result,

𝛾 ≥
𝜉𝑑min

2𝑏3𝑑max
−

𝜉𝑑min
4𝑏3𝑑max

=
𝜉𝑑min

4𝑏3𝑑max
.
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Now we have all the tools to prove the main theorem.

Proof of Theorem 3.3.1. First we assume that the comparison graph 𝐺 is a general graph
(i.e. there is no randomness) and that

𝐿 ≥ 𝐶3
𝑏7𝑑max

𝜉2𝑑2
min

log𝑛. (3.3)

In this case we have:

‖𝝅 − 𝝅∗‖2 ≤
1

√𝜋∗
min

‖𝝅 − 𝝅∗‖𝝅∗ , by Proposition A.3.3

≤
1

√𝜋∗
min

∥𝝅∗⊤ (𝐏 − 𝐏∗)∥𝝅∗

1 − max {𝜆2(𝐏∗), |𝜆𝑛 (𝐏∗) |} − ‖𝐏 − 𝐏∗‖𝝅∗
, by Theorem A.3.4

≤
1

√𝝅∗
min

4𝑏3𝑑max
𝜉𝑑min

∥𝝅∗⊤ (𝐏 − 𝐏∗)∥𝝅∗ , by Lemma 3.3.5

≤
4𝑏7/2𝑑max

𝜉𝑑min
∥𝝅∗⊤ (𝐏 − 𝐏∗)∥2 , by Proposition A.3.3

≤
4𝑏7/2𝑑max

𝜉𝑑min

𝐶𝑏

√𝐿𝑑max

‖𝝅∗‖2 , by Lemma 3.3.3.

Hence
‖𝝅 − 𝝅∗‖2

‖𝝅∗‖2
≤

4𝑏7/2𝑑max
𝜉𝑑min

𝐶𝑏

√𝐿𝑑max

. (3.4)

Now using Lemma 2.3.4, the Equation (3.3) becomes the Equation (3.1), and the Equa-
tion (3.4) becomes the Equation (3.2). This finishes the proof.

3.4 Numerical Experiments

In this section we are going to test how well the Spectral Ranking Algorithm works in
practise. In order to do this we are going to create synthetic data under the Static BTL
Model which we will then feed to the algorithm. In the end we are going to use error metrics
to quantify the “accuracy” of the algorithm.

Error Metrics. For the majority of this chapter we have worked with the ℓ2 norm. Here we
introduce another metric, which is better suited for comparing rankings. We define 𝐷 as
the normalized weighted sum of pairs (𝑖, 𝑗) whose ordering is incorrect:

𝐷 (𝝅∗, 𝝅) =
⎧{
⎨{⎩

1
2𝑛‖𝝅∗‖2

2
∑
𝑖<𝑗

(𝜋∗
𝑖 − 𝜋∗

𝑗 )
2

𝟙(𝜋∗
𝑖 −𝜋∗

𝑗 )(𝜋𝑖−𝜋𝑗)<0
⎫}
⎬}⎭

1/2

, (3.5)

where 𝟙⋅ is an indicator function. Note that this metric is less sensitive to errors between
pairs with similar weights. Moreover, we have the following lemma which connects the
metric 𝐷 (𝝅∗, 𝝅) to the bound provided in Theorem 3.3.1. As a result, the same upper
bound holds for 𝐷 (𝝅∗, 𝝅) error.
Lemma 3.4.1 ([NOS17]: Lemma 1). Let 𝝅∗, 𝝅 be probability vectors. Then,

𝐷 (𝝅∗, 𝝅) ≤
‖𝝅∗ − 𝝅‖2

‖𝝅∗‖2
.
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Figure 3.1: Log-Log plots of the evolution of errors as 𝐿 grows with fixed 𝑝 = 5 log𝑛
𝑛
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Figure 3.2: Log-Log plots of the evolution of errors as 𝑝 goes to 1, with fixed 𝐿 = 32

Synthetic data. We generate data according to the BTL model. We follow the experimen-
tation scheme of [NOS17] but we have written our own code1. In particular, for a given 𝑛
and 𝑏 > 1, the weights are constructed as follows:

𝜋∗
𝑖 = 𝑏(2𝑖−1−𝑛)/2𝑛, 𝑖 ∈ [𝑛].

Obviously 𝜋∗
max

𝜋∗
min

< 𝑏.

We present two kinds of plots. In the first one, we let 𝐿 grow while keeping constant the
probability (𝑝 = 5 log𝑛

𝑛 ) in the 𝒢(𝑛, 𝑝), for 𝑛 = 100, 200, 400. A representative result is
depicted in Figure 3.1.

In the second plot, we let 𝑝 go to 1 while keeping constant the number of comparisons
(𝐿 = 50), for 𝑛 = 100, 200, 400. A representative result is depicted in Figure 3.2.
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appearance of a result like Theorem 3.3.1 was in [NOS17]: Theorem 2, but with an extra
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factor.

1The code is availiable at: https://github.com/dimoik96/ntua-thesis-code
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Chapter 4

The Dynamic BTL Model

In this chapter we present one possible generalization of the Static BTL setup. In this
dynamic setting we add the element of time evolution in the BTL weights. We start by
carefully introducing the model. Next we explain the Dynamic Spectral Algorithm which
attempts at solving the problem efficiently. Subsequently, we provide theoretical guarantees
that the algorithm works with high probability. In the end we show the effectiveness of the
algorithm through numerical experimentation.

4.1 Problem Setup

Time. The basis of this model is that the weights vary over time. We assume that we have
a time grid 𝒯 which corresponds to the time evolution. In our case we assume 𝒯 to be finite.
Let 𝒯 = {1, … , 𝑇}.

Preference Scores. As in the static case suppose we are comparing pairs of items from 𝑛
items of interest, represented as [𝑛] = {1, … , 𝑛}. The Dynamic BTL model assumes that
there is a latent weight (or score) 𝐰∗(𝑡) = (𝑤∗

1(𝑡), … , 𝑤∗
𝑛(𝑡))⊤ ∈ ℝ𝑛

+ associated with each
item 𝑖 ∈ [𝑛] for each timestamp 𝑡 ∈ 𝒯. The outcome of a comparison for a pair of items 𝑖
and 𝑗 at the moment 𝑡 ∈ 𝒯 is determined only by the corresponding weights 𝑤𝑖(𝑡) and 𝑤𝑗(𝑡).
Again we introduce the condition number as

𝑏(𝑡) ∶=
𝑤∗

max(𝑡)
𝑤∗

min(𝑡) .

It is easy to see that if we let the weights vary unconditionally between each time moment
there would be no way to get good estimates since the variance could be huge. Therefore
for a meaningful recovery of 𝐰∗(𝑡), we need to make the additional assumption:

Assumption 4.1.1. There exists 𝑀 ≥ 0 such that

∣∣∣∣

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡) −
𝑤∗

𝑗 (𝑡′)
𝑤∗

𝑖 (𝑡′) + 𝑤∗
𝑗 (𝑡′)

∣∣∣∣
≤ 𝑀 ∣𝑡 − 𝑡′∣ , (4.1)

for all 𝑡, 𝑡′ ∈ 𝒯 and 𝑖 ≠ 𝑗 ∈ [𝑛].
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In words, the above assumption tell us that the weights of each item do not vary a lot
throughout the evolution of time.

Comparison Graphs. We assume that at each time moment 𝑡 ∈ 𝒯 the comparisons between
items are governed by a comparison graph 𝐺𝑡 = ([𝑛], 𝐸𝑡), where [𝑛] represents the 𝑛 items
of interest. The items 𝑖 and 𝑗 are compared at the moment 𝑡 ∈ 𝒯 if and only if (𝑖, 𝑗) ∈ 𝐸𝑡. The
sets of edges 𝐸𝑡 are assumed subsets of {(𝑖, 𝑗) ∈ [𝑛] × [𝑛] ∣ 𝑖 < 𝑗}. Throughout this chapter
we assume that the graphs {𝐺𝑡}𝑇

𝑡=1 are positively correlated Erdős-Rényi graphs, as descibed
in Section 2.4. Note that now we are not going to assume that each comparison graph 𝐺𝑡
is connected, as we did in the static case. Indeed, in most real world application they are
disconnected and very sparse. But we do assume that the union of all 𝐺𝑡 is connected. The
reason of this assumption will become clear later.

Pairwise Comparisons. For each (𝑖, 𝑗) ∈ 𝐸𝑡, we assume that 𝐿 independent comparisons
take place between items 𝑖 and 𝑗 at the moment 𝑡 ∈ 𝒯. Let 𝑌𝑙

𝑖𝑗(𝑡) denote the outcome of the
𝑙-th comparison of the pair 𝑖 and 𝑗 at 𝑡 ∈ 𝒯, such that 𝑌𝑙

𝑖𝑗(𝑡) = 1 if 𝑗 is preferred over 𝑖 and 0
otherwise. Then the Dynamic BTL model assumes that

𝑌𝑙
𝑖𝑗(𝑡) ∼ Bernoulli⎛⎜

⎝

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡)
⎞⎟
⎠

Furthermore, it is assumed that the random variables 𝑌𝑙
𝑖𝑗(𝑡) are independent of one another

for all 𝑖, 𝑗, 𝑙 and 𝑡. Now let 𝐲(𝑡) = {𝑦𝑖𝑗(𝑡)|(𝑖, 𝑗) ∈ 𝐸𝑡}, where

𝑦𝑖𝑗(𝑡) =
1
𝐿

𝐿
∑
𝑙=1

𝑌𝑙
𝑖𝑗(𝑡)

is the fraction of wins of 𝑗 over 𝑖 at 𝑡 ∈ 𝒯. By convention, we set 𝑌𝑙
𝑗𝑖(𝑡) = 1 − 𝑌𝑙

𝑖𝑗(𝑡) for all
(𝑖, 𝑗) ∈ 𝐸𝑡. Then obviously 𝑦𝑗𝑖(𝑡) = 1 − 𝑦𝑖𝑗(𝑡). In the same fashion, we denote

𝑦∗
𝑖𝑗(𝑡) =

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡)

and 𝑦∗
𝑗𝑖(𝑡) = 1 − 𝑦∗

𝑖𝑗(𝑡) for all (𝑖, 𝑗) ∈ 𝐸𝑡. Now we can turn each comparison graph 𝐺𝑡 into
a weighted graph by assigning the weight 𝑦𝑖𝑗(𝑡) for all (𝑖, 𝑗) ∈ 𝐸𝑡. Note that the weighted
graphs 𝐺𝑡 contain all the information of our data.

Goal. The Dynamic BTL model as we have described it so far is invariant under the scaling
of the weights 𝐰∗(𝑡) at each time 𝑡 ∈ 𝒯, so an 𝑛-dimensional representation of the scores is
not unique. To get a unique representation we let

𝝅∗(𝑡) =
𝐰∗(𝑡)

‖𝐰∗(𝑡)‖1
.

The goal is that given a 𝑡 ∈ 𝒯, we want to learn (or at least estimate) the normalized weight
vector 𝝅∗(𝑡) and then rank all the items according to 𝝅∗(𝑡).

Remark 4.1.2. Note that this model is a generalization of the model presented in Chapter 3.
Indeed, if we take 𝐺𝑡 = 𝐺 and 𝑀 = 0 for all 𝑡 ∈ 𝒯 then we recover exactly the Static BTL
model.
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4.2 Dynamic Spectral Ranking Algorithm

We are going to generalize the Spectral Ranking Algorithm (Section 3.2) in this setting. The
first approach that one might try is that given 𝑡 ∈ 𝒯, apply the Spectral Ranking Algorithm
on 𝐺𝑡. This could work if all of the graphs 𝐺𝑡 are connected. But as we said, we make no
such assumption. Instead, the Assumption 4.1.1 suggests that the pairwise outcomes at
close time instants are similar, so it is possible to estimate 𝝅(𝑡) utilizing the data lying in a
neighborhood of 𝑡. Since we have assumed that the union of all graphs is connected, there
exists a time neighborhood such that the union of all the graphs is connected and thus we
can apply the Static Spectral Ranking Algorithm.

We are going to make everything precise. Let

𝑁𝛿 (𝑡) = {𝑡 − 𝛿, … , 𝑡, … , 𝑡 + 𝛿} ∩ 𝒯 , 𝛿 ∈ ℕ,

denote a 𝛿 time neighborhood around 𝑡 ∈ 𝒯. Note that 1 ≤ |𝑁𝛿(𝑡)| ≤ 2𝛿 + 1. For 𝛿 ∈ ℕ, let

𝐺𝛿
𝑡 = ([𝑛], 𝐸𝛿

𝑡 ) with 𝐸𝛿
𝑡 = ⋃

𝑡′∈𝑁𝛿(𝑡)
𝐸𝑡′,

be the union graph that corresponds to the time neighborhood 𝑁𝛿(𝑡). Sometimes we will
abuse the notation and we will denote the union graph just by 𝐺 = ([𝑛], 𝐸).

Let
𝑁𝑖𝑗,𝛿(𝑡) = {𝑡′ ∈ 𝑁𝛿(𝑡)|(𝑖, 𝑗) ∈ 𝐸𝑡′} ,

denote the time instances in 𝑁𝛿(𝑡) where 𝑖 and 𝑗 are being compared. Then for the graph
𝐺 = 𝐺𝛿

𝑡 , consider

̂𝑦𝑖𝑗,𝛿(𝑡) =
1

|𝑁𝑖𝑗,𝛿(𝑡)| ∑
𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)

𝑦𝑖𝑗(𝑡′),

̂𝑦∗
𝑖𝑗,𝛿(𝑡) =

1
|𝑁𝑖𝑗,𝛿(𝑡)| ∑

𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)
𝑦∗

𝑖𝑗(𝑡′).

Let 𝐏𝛿(𝑡) = [𝑃𝑖𝑗,𝛿(𝑡)] ∈ ℝ𝑛×𝑛
+ with

𝑃𝑖𝑗,𝛿(𝑡) =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ ̂𝑦𝑖𝑗,𝛿(𝑡) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
⋅ ∑

𝑘∈𝑁𝐺(𝑖)
̂𝑦𝑖𝑘,𝑑(𝑡) if 𝑖 = 𝑗

0 otherwise,

where 𝑑𝛿,max = 𝑑𝛿,max(𝑡) is the maximum degree of the graph 𝐺 = 𝐺𝛿
𝑡 .

Also let 𝐏∗(𝑡) = [𝑃∗
𝑖𝑗(𝑡)] ∈ ℝ𝑛×𝑛

+ with

𝑃∗
𝑖𝑗(𝑡) =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

𝑦∗
𝑖𝑗(𝑡) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦∗

𝑖𝑘(𝑡) if 𝑖 = 𝑗

0 otherwise.
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It is easy to see that the normalized weight vector 𝝅∗(𝑡) = (𝜋∗
1(𝑡), … , 𝜋∗

𝑛(𝑡))⊤ ∈ ℝ𝑛
+ is the

stationary distribution of the Markov chain induced by the matrix 𝐏∗(𝑡), since it satisfies
the detailed balance equation 𝜋∗

𝑖 (𝑡)𝑃∗
𝑖𝑗(𝑡) = 𝜋∗

𝑗 (𝑡)𝑃∗
𝑗𝑖(𝑡) for all 𝑖, 𝑗 ∈ [𝑛].

Hence building upon the previous algorithm we get the following:

Algorithm 2: Spectral Ranking Algorithm for the Dynamic BTL.
Input: The time grid 𝒯, a time instance 𝑡 ∈ 𝒯, the comparison graphs 𝐺𝑡′ and the

statistics 𝐲(𝑡′) for all 𝑡′ ∈ 𝒯
Output: An estimate 𝝅(𝑡) ∈ ℝ𝑛

+ of the true normalized weight vector 𝝅∗(𝑡).
1 Choose 𝛿 ∈ ℕ such that the union graph 𝐺 = 𝐺𝛿

𝑡 is connected.
2 Compute the matrix 𝐏𝛿(𝑡) as shown above.
3 Compute the leading left eigenvector 𝝅(𝑡) of 𝐏𝛿(𝑡).

4.3 Previous Work

The Dynamic BTL model was first introduced in [KT21]. Firstly in this paper it is assumed
that

𝑇 = {
𝑖
𝑇 ∶ 𝑖 = 0, … , 𝑇} ⊆ [0, 1].

Secondly and more crucially it is also assumed that the comparison graphs 𝐺𝑡 are all pairwise
independent in the following sense:

ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡 ∩ 𝐸𝑠] = ℙ [(𝑖, 𝑗) ∈ 𝐸𝑡] ℙ [(𝑖, 𝑗) ∈ 𝐸𝑠] = 𝑝𝑡𝑝𝑠.

With these extra assumptions and using the same algorithm described above, they get the
following theorem.

Theorem 4.3.1 ([KT21]: Theorem 2). Suppose that 𝐺𝑡′ ∼ 𝒢(𝑛, 𝑝𝑡′) for all 𝑡 ∈ 𝒯 so that
𝐺𝛿 ∼ 𝒢(𝑛, 𝑝𝛿(𝑡)) with

𝑝𝛿(𝑡) = 1 − ∏
𝑡′∈𝑁𝛿(𝑡)

(1 − 𝑝𝑡′),

and denote 𝑝𝛿,sum = ∑𝑡′∈𝑁𝛿(𝑡) 𝑝𝑡′. Assume that 𝑛 ≥ 𝑐1 log𝑛, 𝑛𝑝𝛿(𝑡) ≥ 𝑐0 log𝑛 and 𝑝𝛿,sum(𝑡) ≥
𝑐2 log𝑛 for some constants 𝑐0, 𝑐1, 𝑐2. Then for constants 𝐶1, 𝐶2, if

2𝐶1√ log𝑛
𝐿𝑛𝑝𝛿(𝑡)𝑝𝛿,sum(𝑡) + 16

𝑀𝛿𝑛
𝑇 ≤

1
96𝑏7/2(𝑡)

holds, we have with probability at least 1 − 1
poly(𝑛) that

‖𝝅(𝑡) − 𝝅∗(𝑡)‖2
‖𝝅∗(𝑡)‖2

≤ 1536
𝑀𝛿𝑛𝑏7/2(𝑡)

𝑇 + 64𝐶2𝑏9/2(𝑡)√
3

𝐿𝑛𝑝𝛿(𝑡)𝑝𝛿,sum(𝑡) .

Remark 4.3.2. Apart from the non-essential difference in the definition of the time grid
𝒯, our assumption that the graphs {𝐺𝑡} are positively correlated is more general than
the assumption of independence of the graphs {𝐺𝑡}. Indeed for 𝛼 = 0 in our model we
immediately get the independence model.
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Moreover, we argue that our setup is a more natural setting, since usually in real life events,
such as football tournaments, the next day’s events are not entirely independent from the
previous day.

4.4 Main Result

The aim of this section is to prove that the Dynamic Spectral Ranking Algorithm actually
works in our more general setting, i.e. it provides a good estimate of 𝝅∗(𝑡).

Recall that we have assumed that the graphs 𝐺𝑡 are positively correlated (Definition 2.4.1).
So, by Proposition 2.3.8, the graph 𝐺 = 𝐺𝛿

𝑡 is an Erdős-Rényi graph with probability

𝑝 = 1 − (1 − 𝑝𝑡−𝛿)
𝑡+𝛿
∏

𝑡′=𝑡−𝛿+1
(1 − (1 − 𝛼) 𝑝𝑡′) .

Theorem 4.4.1. Suppose that 𝑝 ≥ 𝑘1
log𝑛

𝑛 for a suitable constant 𝑘1 > 0. Then there are
constants 𝐶1, 𝐶2 > 0 such that if

𝑐1√𝛿 log𝑛
𝐿𝑛𝑝 + 𝑐2𝑀𝛿𝑛 ≤ 𝑏−7/2(𝑡), (4.2)

for some constants 𝑐1, 𝑐2 > 0, then with probability at least 1 − 1
poly(𝑛) , one has

‖𝝅(𝑡) − 𝝅∗(𝑡)‖2
‖𝝅∗(𝑡)‖2

≤ 𝐶1√𝑏9(𝑡)𝛿
𝐿𝑛𝑝 + 𝐶2𝑀𝛿𝑛𝑏7/2(𝑡). (4.3)

Remark 4.4.2. Note that if 𝑀 = 0 and 𝛿 = 1, Theorem 4.4.1 reduces to Theorem 3.3.1.

Remark 4.4.3. By Corollary 2.4.2, the condition 𝑝 ≥ 𝑐1
log𝑛

𝑛 is satisfied if

𝑝𝛿,sum = ∑
𝑡′∈𝑁𝛿(𝑡)

𝑝𝑡′ ≥
log𝑛 − log (𝑛 − 𝑐 log𝑛)

1 − 𝑎 ≥ 𝑐
log𝑛

𝑛(1 − 𝛼). (4.4)

Moreover, the Equation (4.4) is satisfied if 𝑝𝑡′ ≥ 𝑐 log𝑛
𝑛(1−𝛼)𝑇 .

Let 𝐏̂𝛿(𝑡) = [𝑃̂𝑖𝑗,𝛿(𝑡)] ∈ ℝ𝑛×𝑛
+ with

𝑃̂𝑖𝑗,𝛿(𝑡) =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

̂𝑦∗
𝑖𝑗,𝛿(𝑡) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺(𝑖)
̂𝑦∗
𝑖𝑘,𝛿(𝑡) if 𝑖 = 𝑗

0 otherwise.

Note that 𝔼 [𝑦𝑖𝑗,𝛿] = 𝑦∗
𝑖𝑗,𝛿, so by the Strong Law of Large Numbers we have that 𝐏𝛿(𝑡) → 𝐏̂𝛿(𝑡)

entrywise, almost surely. Now let 𝚫 = 𝐏𝛿(𝑡) − 𝐏∗(𝑡). Then

𝚫 = (𝐏𝛿(𝑡) − 𝐏̂𝛿(𝑡)) + (𝐏̂𝛿(𝑡) − 𝐏∗(𝑡))
= 𝚫1 + 𝚫2.

We need the following lemmas.
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Lemma 4.4.4. There exists a constant 𝐶1 ≥ 1 such that with probability at least 1 − 1
poly(𝑛) ,

one has

∥𝚫1∥2 ≤ 𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
,

where
𝑁𝛿,max = max

(𝑖,𝑗)∈𝐸𝛿
𝑡

∣𝑁𝑖𝑗,𝛿(𝑡)∣ and 𝑁𝛿,min = min
(𝑖,𝑗)∈𝐸𝛿

𝑡

∣𝑁𝑖𝑗,𝛿(𝑡)∣

Proof. This is a direct application of Proposition A.1.1: Let 𝐿𝑖𝑗 = 𝐿𝑁𝑖𝑗,𝛿 and

𝑍𝑙
𝑖𝑗 =

⎧{{
⎨{{⎩

1
𝐿𝑑𝛿,max ∣𝑁𝑖𝑗,𝛿(𝑡)∣

(𝑌𝑙
𝑖𝑗 − 𝑦∗

𝑖𝑗) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

0 otherwise,

where 𝑌𝑙
𝑖𝑗 ∼ Bernoulli (𝑦∗

𝑖𝑗). Then 𝐿max = 𝐿𝑁𝛿,max, 𝐵 = 1
𝐿𝑑𝛿,max𝑁𝛿,max

and 𝑁max ≤ 𝑑𝛿,max and
we get exactly what we want.

Lemma 4.4.5 ([KT21]: Lemma 1). We have that

‖𝚫2‖2 ≤ 4
𝑀𝛿 |𝐸|
𝑑𝛿,max

.

Proof. The entries of 𝚫2 = [Δ2,𝑖𝑗] are given by

Δ2,𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max ∣𝑁𝑖𝑗,𝛿(𝑡)∣

⋅ ( ̂𝑦∗
𝑖𝑗,𝛿(𝑡) − 𝑦∗

𝑖𝑗(𝑡)) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

− ∑
𝑘∈𝑁𝐺(𝑖)

Δ2,𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

By Assumption 4.1.1 for all (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸 we have that

∣Δ2,𝑖𝑗∣ ≤
1

𝑑𝛿,max ∣𝑁𝑖𝑗,𝛿(𝑡)∣
∑

𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)
∣𝑦∗

𝑖𝑗(𝑡′) − 𝑦∗
𝑖𝑗(𝑡)∣ (4.5)

≤
𝑀

𝑑𝛿,max ∣𝑁𝑖𝑗,𝛿(𝑡)∣
∑

𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)
∣𝑡′ − 𝑡∣ (4.6)

≤
𝑀𝛿

𝑑𝛿,max
. (4.7)

Now let 𝐃1 be the diagonal matrix containing the elements Δ2,𝑖𝑖 and 𝐃2 = 𝚫2 − 𝐃1. Since
𝐃1 is diagonal we have

∥𝚫2∥2 ≤ ∥𝐃1∥2 + ∥𝐃1∥2
≤ max

𝑖
∣Δ2,𝑖𝑖∣ + ∥𝐃2∥𝐹 .

By Equation (4.7) we have that

∥𝐃2∥𝐹 ≤ 2
𝑀𝛿 |𝐸|
𝑑𝛿,max

.
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Now, in order to bound ∥𝐃1∥2 we note that

∣Δ2,𝑖𝑖∣ =
∣∣∣∣
− ∑

𝑘≠𝑖
Δ2,𝑖𝑘

∣∣∣∣
≤ 𝑑𝛿,maxmax

𝑘≠𝑖
∣Δ2,𝑖𝑘∣

≤ 𝑑𝛿,maxmax
𝑘≠𝑖

𝑀𝛿
𝑑𝛿,max

≤ 𝑀𝛿.

Hence ∥𝐃1∥2 ≤ 𝑀𝛿. As a result

∥𝐃2∥2 ≤ 𝑀𝛿 (1 +
2 |𝐸|

𝑑𝛿,max
)

≤ 4
𝑀𝛿 |𝐸|
𝑑𝛿,max

.

Lemma 4.4.6. There exist constants 𝑐1, 𝐶1 such that if 𝑛 ≥ 𝑐1 log𝑛, then with probability at
least 1 − 1

poly(𝑛) we have that

∥𝝅∗(𝑡)⊤𝚫1∥2 ≤ 𝐶1

√
√√
⎷

𝑁𝛿,max𝑏2(𝑡)
𝐿𝑑𝛿,max𝑁2

𝛿,min
‖𝝅∗(𝑡)‖2 .

Proof. This is a direct application of Proposition A.1.2: Construct 𝚫 as in Lemma 4.4.4 and
let 𝐚 = 𝝅∗(𝑡).

Lemma 4.4.7. If there exist constants 𝐶1, 𝐶2 such that

𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
+ 𝐶2

𝑀𝛿|𝐸|
𝑑𝛿,max

≤
𝜉𝑑𝛿,min

4𝑏7/2(𝑡)𝑑𝛿,max
, (4.8)

then with probability at least 1 − 1
poly(𝑛) we have

1 − 𝜆max (𝐏∗(𝑡)) − ‖𝚫‖𝝅∗(𝑡) ≥
𝜉𝑑𝛿,min

4𝑏(𝑡)3𝑑𝛿,max
,

where 𝜉 is the spectral gap of the graph 𝐺.

Proof. By Proposition A.2.2 with (𝐏, 𝝅) = (𝐏∗(𝑡), 𝝅∗(𝑡)), we have that

1 − 𝜆max (𝐏∗(𝑡)) − ∥𝐏𝛿(𝑡) − 𝐏∗(𝑡)∥𝝅∗(𝑡) ≥
𝜉𝑑𝛿,min

2𝑏(𝑡)3𝑑𝛿,max
− ∥𝐏𝛿(𝑡) − 𝐏∗(𝑡)∥𝝅∗(𝑡) .

But by Lemma 4.4.4, Lemma 4.4.5 and Equation (4.8),with probability at least 1 − 1
poly(𝑛)
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we have,

∥𝐏𝛿(𝑡) − 𝐏∗(𝑡)∥2 ≤ ∥𝚫1∥2 + ∥𝚫2∥2

≤ √𝑏(𝑡) ∥𝚫1∥𝝅∗(𝑡) + 4
𝑀𝛿 |𝐸|
𝑑𝛿,max

≤ 𝐶1

√
√√
⎷

𝑏(𝑡)𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
+ 𝐶2

𝑀𝛿 |𝐸|
𝑑𝛿,max

≤ √𝑏(𝑡) ⎛⎜⎜
⎝

𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
+ 𝐶2

𝑀𝛿 |𝐸|
𝑑𝛿,max

⎞⎟⎟
⎠

≤
𝜉𝑑𝛿,min

4𝑏3(𝑡)𝑑𝛿,max
.

As a result,

1 − 𝜆max (𝐏∗(𝑡)) − ‖𝚫‖𝝅∗(𝑡) ≥
𝜉𝑑𝛿,min

2𝑏(𝑡)3𝑑𝛿,max
−

𝜉𝑑𝛿,min

4𝑏(𝑡)3𝑑𝛿,max

=
𝜉𝑑𝛿,min

4𝑏(𝑡)3𝑑𝛿,max
.

Now we have all the tools to prove the main theorem.

Proof of Theorem 4.4.1. First we assume that 𝐺 is a general graph (i.e. there is no random-
ness) and that

𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
+ 4

𝑀𝛿|𝐸|
𝑑𝛿,max

≤
𝜉𝑑𝛿,min

4𝑏7/2(𝑡)𝑑𝛿,max
. (4.9)

In this case we have:

‖𝝅(𝑡) − 𝝅∗(𝑡)‖2 ≤
1

√𝜋∗
min(𝑡)

‖𝝅(𝑡) − 𝝅∗(𝑡)‖𝝅∗(𝑡) , by Proposition A.3.3

≤
1

√𝜋∗
min(𝑡)

∥𝝅∗(𝑡)⊤𝚫∥𝝅∗

1 − max {𝜆2(𝐏∗), |𝜆𝑛 (𝐏∗) |} − ‖𝚫‖𝝅∗
, by Theorem A.3.4

≤
1

√𝜋∗
min(𝑡)

4𝑏3(𝑡)𝑑𝛿,max
𝜉𝑑𝛿,min

∥𝝅∗(𝑡)⊤𝚫∥𝝅∗ , by Lemma 4.4.7

≤
4𝑏7/2(𝑡)𝑑𝛿,max

𝜉𝑑𝛿,min
∥𝝅∗(𝑡)⊤𝚫∥2 , by Proposition A.3.3

≤
4𝑏7/2(𝑡)𝑑𝛿,max

𝜉𝑑𝛿,min
(∥𝝅∗(𝑡)⊤𝚫1∥2 + ∥𝝅∗(𝑡)⊤𝚫2∥2)

≤
4𝑏7/2(𝑡)𝑑𝛿,max

𝜉𝑑𝛿,min

⎛⎜⎜
⎝

𝐶1

√
√√
⎷

𝑁𝛿,max𝑏2(𝑡)
𝐿𝑑𝛿,max𝑁2

𝛿,min
+ ∥𝚫2∥2

⎞⎟⎟
⎠

‖𝝅∗(𝑡)‖2 , by Lemma 4.4.6

Hence by Lemma 4.4.5 we get

‖𝝅(𝑡) − 𝝅∗(𝑡)‖2
‖𝝅∗(𝑡)‖2

≤
4𝑏7/2(𝑡)𝑑𝛿,max

𝜉𝑑𝛿,min

⎛⎜⎜
⎝

𝐶1

√
√√
⎷

𝑁𝛿,max𝑏2(𝑡)
𝐿𝑑𝛿,max𝑁2

𝛿,min
+ 4

𝑀𝛿 |𝐸|
𝑑𝛿,max

⎞⎟⎟
⎠

. (4.10)
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(b) Error Metric: ℓ2

Figure 4.1: Log-Log plots of the evolution of errors as 𝐿 grows with fixed 𝑇 = 50

Now using the results in Lemma 2.3.4 and the fact that 1 ≤ 𝑁𝛿,min ≤ 𝑁𝛿,max ≤ ∣𝑁𝛿(𝑡)∣ ≤
2𝛿 + 1 ≤ 3𝛿, the Equation (4.9) becomes Equation (4.2), and the Equation (4.10) becomes
the Equation (4.3). This finishes the proof.

4.5 Numerical Experinments

In this section we are going to test1 how well the Dynamic Spectral Ranking Algorithm works
in practise. In order to do this we are going to create synthetic data under the Dynamic
BTL Model which we will then feed to the algorithm. For the evaluation we are going to
use the average ℓ2 norm over all time instances as well as the average metric 𝐷, defined in
Equation (3.5), over all time instances.

Synthetic Data. Let 𝒯 = [𝑇] and 𝑛 ∈ ℕ. We define the true BTL weights as follows:
We start with a base weight vector 𝝅∗ as in the static case, ie 𝜋∗

𝑖 =(2𝑖−1−𝑛)/2𝑛 for some
𝑏 > 1. Now all the true BTL weights are generated according to the normal 𝒩(𝝅∗, 𝐼𝑛). For
the generation of the graphs 𝐺𝑡 they are created as independent Erdős-Rényi graphs with
probabilities 𝑝𝑡 ∈ [ 1

𝑛 , log𝑛
𝑛 ]. Then we create the statistics 𝐲(𝑡) as defined by the Dynamic

BTL Model.

We present two sets of plots. In both of them, we let 𝐿 grow while keeping the time window
constant (for 𝑇 = 50 and 𝑇 = 100), for 𝑛 = 100, 200, 400. The results are depicted in
Figure 4.1 and in Figure 4.2.

1The code is availiable at: https://github.com/dimoik96/ntua-thesis-code

https://github.com/dimoik96/ntua-thesis-code
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Figure 4.2: Log-Log plots of the evolution of errors as 𝐿 grows with fixed 𝑇 = 100



Chapter 5

The Static Adversarial BTL Model

In this chapter we present another possible generalization of the Static BTL setup. In this
static adversarial setting we add an adversary that is untruthful about some of the pairwise
outcomes. We formally present the model and then we introduce the Static Adversarial
Spectral Ranking Algorithm. Furthermore, we provide theoretical guarantees that the
algorithm works with high probability.

5.1 Problem Setup

Consider the Static BTL Model, as presented in Chapter 3. To reiterate, suppose that we
have 𝑛 items that we want to compare and that there is a latent weight 𝐰∗ ∈ ℝ𝑛

+ associated
with each item. The outcome of each pairwise comparison depends only on the weights 𝑤∗

𝑖
and 𝑤∗

𝑗 . We are also given a comparison graph 𝐺∗ = ([𝑛], 𝐸∗) where (𝑖, 𝑗) ∈ 𝐸∗ if and only
if the items 𝑖 and 𝑗 have been compared. This is an Erdős-Rényi random graph. Moreover,
for each (𝑖, 𝑗) ∈ 𝐸∗, we assume that 𝐿 independent comparisons take place between items 𝑖
and 𝑗. We turn the comparison graph 𝐺∗ into a weighted graph by assigning as weights 𝑦𝑖𝑗
the fraction of wins of 𝑗 over 𝑖, i.e.

𝑦𝑖𝑗 =
1
𝐿

𝐿
∑
𝑙=1

𝑌𝑙
𝑖𝑗,

where

𝑌𝑙
𝑖𝑗 ∼ Bernoulli⎛⎜

⎝

𝑤∗
𝑗

𝑤∗
𝑖 + 𝑤∗

𝑗

⎞⎟
⎠

Also, as before, let

𝑦∗
𝑖𝑗 =

𝑤∗
𝑗

𝑤∗
𝑖 + 𝑤∗

𝑗
.

Now we consider a contamination model where an adversary has a complete knowledge
of the truthful comparison graph 𝐺∗, as well as the true weights 𝐰∗. This adversary can
subsequently contaminate some fraction of 𝐸∗ by adding new edges with arbitrary weights,
deleting and corrupting existing edges and weigths. As a result, we receive as input a
contaminated comparison graph 𝐺 = ([𝑛], 𝐸).

29
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Let 𝐸𝑢𝑐 = 𝐸∗ ∩ 𝐸 be the set of uncorrupted edges and 𝐸𝑐 = 𝐸 ∖ 𝐸𝑢𝑐 be the set of corrupted
or newly added edges. Note that 𝐸𝑑 = 𝐸∗ ∖ 𝐸 is the set of edges deleted by the adversary.
Then the problem can be formulated as follows: Let 𝐺∗ be a truthful comparison graph.
Given a corrupted comparison graph 𝐺 can we estimate the true BTL weights 𝐰?

5.1.1 The contamination model for Erdős-Rényi graphs

Notation 5.1.1. Let 𝐺 = (𝑉, 𝐸) be a graph and let (𝑆, 𝑉 ∖ 𝑆) be a cut, with 𝑆 ⊆ 𝑉. Denote
the set of edges in 𝐸 that “cross” the cut (𝑆, 𝑉 ∖ 𝑆) by 𝐸(𝑆). Note that if 𝑆 = {𝑢} then
𝐸(𝑢) ∶= 𝐸({𝑢}) is the set of edges in 𝐸 that are incident on 𝑢, i.e. 𝐸(𝑢) = 𝑁𝐺(𝑢).

In this general setting, i.e. when there is no assumption about the nature of the corruption
of the graph 𝐺∗, we have the following theorem which characterizes which corrupted graphs
can be recovered:

Theorem 5.1.2 ([Aga+20]: Theorem 1). Given any arbitrary comparison graph 𝐺 = ([𝑛], 𝐸)
as input, it is possible to uniquely identify the true weights 𝝅∗ in the limit 𝐿 → ∞, if and only
if for every cut (𝑆, 𝑉 ∖ 𝑆) it holds

|𝐸𝑢𝑐(𝑆)| > |𝐸𝑐(𝑆)|.

Now we present a more specific contamination model that is more suitable for the structure
of an Erdős-Rényi graph. Let 𝐺∗ = ([𝑛], 𝐸∗) ∼ 𝒢(𝑛, 𝑝) be an Erdős-Rényi graph that
corresponds to a truthful comparison graph. Of course, we assume that 𝑝 ≥ 𝑐 log𝑛

𝑛 because 𝐺∗

has to be connected. Wewant to construct a contaminated version of 𝐺∗ given a contamination
rate 𝛾 in a canonical way.

Definition 5.1.3. Let 𝛾 ∈ [0, 1) be the contamination rate. Consider the set Γ(𝐺∗, 𝛾)
defined as the set of all graphs 𝐺 = ([𝑛], 𝐸) such that

∀𝑢 ∈ [𝑛] ∶ ∣𝐸𝑑(𝑢) ∪ 𝐸𝑐(𝑢)∣ ≤ 𝛾 |𝐸∗(𝑢)| ,

where 𝐸𝑐(𝑢) is some subset of 𝐸(𝑢) (this set represents the edges that have corrupted
weights) and 𝐸𝑑(𝑢) = 𝐸∗(𝑢) ∖ 𝐸(𝑢) (this set represents the deleted edges). We refer to
Γ(𝐺∗, 𝛾) as the set of all 𝛾- contaminated versions of 𝐺∗.

Remark 5.1.4. Note that Γ(𝐺∗, 𝛾) ≠ ∅ for all 𝛾 ∈ [0, 1), since Γ(𝐺∗, 𝛾) ⊆ Γ(𝐺∗, 𝛾′) for
0 ≤ 𝛾 ≤ 𝛾′ < 1 and Γ(𝐺∗, 0) = {𝐺∗}.

Now let’s see what is the connection between the degrees of the truthful graph and the
degrees of the contaminated graph.

Lemma 5.1.5. Let 𝐺 ∈ Γ(𝐺∗, 𝛾) and let 𝑑∗
𝑖 and 𝑑𝑖 denote the degree of vertex 𝑖 of graph 𝐺∗

and 𝐺, respectively. Then
(1 − 𝛾)𝑑∗

𝑖 ≤ 𝑑𝑖 ≤ (1 + 𝛾)𝑑∗
𝑖 .

Hence

(1 − 𝛾)|𝐸∗| ≤ |𝐸| ≤ (1 + 𝛾)|𝐸∗| and (1 − 𝛾)𝑑∗
min ≤ 𝑑min ≤ 𝑑max ≤ (1 + 𝛾)𝑑∗

max.

Proof. Fix 𝑖 ∈ [𝑛]. Let

• 𝑎1 = |𝐸(𝑢) ∖ 𝐸∗(𝑢)| be the number of new edges,



5.2. Previous Work 31

• 𝑎2 = |𝐸∗(𝑢) ∖ 𝐸(𝑢)| be the number of deleted edges,

• 𝑎3 = |𝐸𝑐(𝑢) ∩ 𝐸∗(𝑢)| be the number of existing edges that are contaminated,

• 𝑎4 = |𝐸∗(𝑢) ∖ ((𝐸𝑐(𝑢) ∩ 𝐸∗(𝑢)) ∪ (𝐸∗(𝑢) ∖ 𝐸(𝑢)))| be the number of existing edges
that are not contaminated.

Then it is easy to see that 𝑑𝑖 = 𝑎1 +𝑎3 +𝑎4, 𝑑∗
𝑖 = 𝑎2 +𝑎3 +𝑎4 and 𝑎1 +𝑎2 +𝑎3 ≤ 𝛾(𝑎2 +𝑎3 +𝑎4),

since 𝐺 ∈ Γ(𝐺∗, 𝛾). Hence

𝑑𝑖 = 𝑎1 + 𝑎3 + 𝑎4

≤ 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4

≤ 𝛾(𝑎2 + 𝑎3 + 𝑎4) + 𝑎4

≤ (1 + 𝛾)(𝑎2 + 𝑎3 + 𝑎4)
= (1 + 𝛾)𝑑∗

𝑖 .

Similarly 𝑑𝑖 ≥ (1 − 𝛾)𝑑∗
𝑖 .

Remark 5.1.6. As in the previous proof we can show that if 𝐺 ∈ Γ(𝐺∗, 𝛾) then |𝐸𝑐(𝑢)| ≤
𝛾|𝐸(𝑢)| for all 𝑢.

Goal. To sum up, the problem setup is that we assume that there is a truthful comparison
Erdős-Rényi graph 𝐺∗ (which we have no access) and given a contamination rate 𝛾 we have
access to a connected 𝛾-contaminated version 𝐺. We want to estimate the normalized true
BTL weights

𝝅∗ =
𝐰∗

‖𝐰∗‖1
.

Remark 5.1.7. Note that this model is a generalization of the model presented in Chapter 3.
Indeed, if we take 𝛾 = 0 then Γ(𝐺∗, 0) = {𝐺∗}, so we recover exactly the Static BTL model.

In this contamination setting for Erdős-Rényi random graphs, Theorem 5.1.2 takes the
following form.

Theorem 5.1.8 ([Aga+20]: Theorem 2). Let 𝜀 > 0 and 0 < 𝛾 < 1/4 − 𝜀. Then there
exists a sufficiently large constant 𝑐 > 1, such that if 𝐺∗ ∼ 𝒢(𝑛, 𝑝) with 𝑝 ≥ 𝑐 log𝑛

𝑛 and
𝐺 ∈ Γ(𝐺∗, 𝛾) then with probability at least 1 − 1

poly(𝑛) , the cut-majority condition described
in Theorem 5.1.2 is satisfied for every cut in 𝐺, and as a consequence, the true weights 𝝅∗

are uniquely identifiable as 𝐿 → ∞. Conversely, if the corruption rate 𝛾 ≥ 1/4 + 𝜀, then with
probability at least 1 − 1

poly(𝑛) , there exists a choice of adversarial corruption such that the
cut-majority condition described in Theorem 5.1.2 is violated for at least one cut in 𝐺, rendering
the true weights unidentifiable, even as 𝐿 → ∞.

5.2 Previous Work

In this section we go over some previous work on this problem. In particular, we briefly
explain the Adversarially Robust Recovery algorithm as presented in [Aga+20], that attempts
to solve the problem in hand. The basic idea is to somehow find which edges are most



32 Chapter 5. The Static Adversarial BTL Model

probably corrupted and remove them. Then we “hope” that the resulting graph is connected
and apply the Accelerated Spectral Ranking Algorithm ([APA18]).

Now let’s make everything precise. Let 𝑝 ≥ 𝑐1
log𝑛

𝑛 , for some sufficiently large constant
𝑐1 > 0 and let 𝐺∗ = ([𝑛], 𝐸∗) ∼ 𝒢(𝑛, 𝑝) be an Erdős-Rényi graph that corresponds to a
truthful comparison graph. Let 0 ≤ 𝛾 ≤ 𝛾𝐿𝑃 = 𝑐2

log(𝑛𝑝)
log𝑛 be a contamination rate, where 𝑐2

is a constant. Now let 𝐺 ∈ Γ(𝐺∗, 𝛾) be a connected contaminated version of 𝐺. In order to
identify which edges have been corrupted we introduce the variables 𝑥(𝑒) ∈ [0, 1] which
indicate whether an edge is corrupted. Intuitively they can be interpreted as follows: the
higher the value of 𝑥(𝑒) the higher the probability that 𝑒 is corrupted.

Definition 5.2.1 ([Aga+20]: Definition 3). Given a (simple) cycle 𝐶 = (𝑣1, … , 𝑣𝑙, 𝑣1) of
length 𝑙 in 𝐺, we call 𝐶 approximately consistent if

1 − (2𝑙 − 1)𝜀𝐿
1 + 𝜀𝐿

≤
𝑙

∏
𝑖=1

𝑦𝑣𝑖,𝑣𝑖+1

𝑦𝑣𝑖+1,𝑣𝑖

≤
1 + 𝜀𝐿

1 − (2𝑙 − 1)𝜀𝐿
,

where 𝜀𝐿 = (1 + 𝑏)√log𝑛/𝐿, and inconsistent otherwise. Let ℂ denote the set of all
inconsistent cycles in 𝐺.

Now we consider the following Linear Program (LP) which identifies corrupted edges:

min ∑
𝑒∈𝐸

𝑥(𝑒)

subject to: ∑
𝑒∈𝐶

𝑥(𝑒) ≥ 1, ∀𝐶 ∈ ℂ

∑
𝑒∈𝐸(𝑢)

𝑥(𝑒) ≤ 𝛾 |𝐸(𝑢)| ≤ 𝛾𝐿𝑃 |𝐸(𝑢)| , ∀𝑢 ∈ [𝑛]

0 ≤ 𝑥(𝑒) ≤ 1, ∀𝑒 ∈ 𝐸.

Lemma 5.2.2 ([Aga+20]: Lemma 1). The above LP is solvable in 𝑂 (𝑛2+𝑜(1)𝑑6
avg) time where

𝑑avg is the average degree of 𝐺.

Now that we “know” which edges are corrupted, we prune the given graph 𝐺 according
to a solution of the above LP, as follows: Given any feasible solution 𝐱 to the above LP, let
𝐸𝑙𝑝𝑟 = {𝑒 ∈ 𝐸 ∶ 𝑥(𝑒) ≥ log(𝑛𝑝)/(5 log𝑛)} be the set of edges with “large” 𝑥(𝑒) values. Then
we delete all edges in 𝐸𝑙𝑝𝑟 from 𝐺, resulting in a “cleaned” comparison graph 𝐺 = ([𝑛], 𝐸).
The pruned graph is connected with high probability, as shown by the following lemma.

Lemma 5.2.3 ([Aga+20]: Lemma 2). With probability at least 1 − 1
poly(𝑛) , we have that the

pruned graph 𝐺 is connected and furthermore contains no edges from

𝐸𝐴 =
⎧{
⎨{⎩

(𝑖, 𝑗) ∈ 𝐸 ∶ ∣𝑦𝑖𝑗 − 𝑦∗
𝑖𝑗∣ > ℓ𝑛,𝑝√ log𝑛

𝐿

⎫}
⎬}⎭

,

where ℓ𝑛,𝑝 = 4 (4 + log𝑛
log(𝑛𝑝)) (1 + 𝑏).

At this point, since we have a connected graph 𝐺 we can apply the Accelerated Spectral
Ranking Algorithm ([APA18]). Hence we have Algorithm 3.

This algorithm satisfies the following.
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Algorithm 3: Adversarially Robust Recover Algorithm for the Static Adversarial
BTL Model.
Input: Items [𝑛], graph 𝐺 = (𝑉, 𝐸), parameters 𝑝, 𝑏 and 𝐿.
Output: An estimate 𝝅 ∈ ℝ𝑛

+ of the true normalized weight vector 𝝅∗.

1 Construct a LP as above and solve it: 𝐱 ← solution of LP.
2 For all (𝑖, 𝑗) ∈ 𝐸, let ̂𝑥(𝑖, 𝑗) = 𝟙{𝑥(𝑖,𝑗)≥log(𝑛𝑝)/(5 log𝑛)}.
3 If ̂𝑥(𝑖, 𝑗) = 1, then remove the edge (𝑖, 𝑗) and create the graph 𝐺.
4 Return the output of Accelerated Spectral Ranking ([APA18]) algorithm on this

pruned dataset.

Theorem 5.2.4 ([Aga+20]: Theorem 3). Given an input comparison graph 𝐺 = (𝑉, 𝐸)
conforming to the contamination model described in Section 5.1.1 with Erdős-Rényi graph
parameter 𝑝 ≥ 𝑘 log𝑛

𝑛 for any 𝑘 larger than some sufficiently large constant, true BTL weights
𝝅∗, and number of samples per pair 𝐿; if the corruption rate per vertex 𝛾 ≤ log(𝑛𝑝)

125 log𝑛 , then there

is an efficient algorithm that, with probability at least 1 − 1
poly(𝑛) , recovers an estimate 𝝅 such

that

‖𝝅 − 𝝅∗‖1 ≤ 𝐶𝑏2 log 𝑏√ log𝑛
𝐿 ,

for an absolute constant 𝐶.

5.3 Static Adversarial Spectral Ranking Algorithm

The main drawback in the previous algorithm is that in Theorem 5.2.4 there is no immediate
reduction of the result into the Static BTL Theorem (Theorem 3.3.1) when 𝛾 = 0, as one
might would anticipate. Below we modify the previous algorithm by applying the Spectral
Ranking Algorithm (Algorithm 1) in the last step, instead of the Accelerated Spectral Ranking
Algorithm.

Recall that we have a connected pruned graph 𝐺 = ([𝑛], 𝐸). Let 𝐏̃ = [𝑃̃𝑖𝑗] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦𝑖𝑘 if 𝑖 = 𝑗

0 otherwise,

where 𝑦𝑖𝑗 are the corrupted statistics, i.e. the weights of the corrupted graph 𝐺, and
𝑑max = 𝑑max(𝐺) is the maximum degree of the graph 𝐺. Note that 𝑑max(𝐺) ≥ 𝑑max(𝐺).

Also let 𝐏̃∗ = [𝑃̃∗
𝑖𝑗] ∈ ℝ𝑛×𝑛

+ with

𝑃̃∗
𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦∗
𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦∗

𝑖𝑘 if 𝑖 = 𝑗

0 otherwise,
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It is easy to see that the normalized weight vector 𝝅∗ = 𝝅∗ is the stationary distribution of
𝐏̃∗, since it satisfies the detailed balance equation 𝜋∗

𝑖 𝑃̃∗
𝑖𝑗 = 𝜋∗

𝑗 𝑃̃∗
𝑗𝑖 for all 𝑖, 𝑗 ∈ [𝑛].

In summary, we have the following algorithm:

Algorithm 4: Spectral Ranking Algorithm for the Static Adversarial BTL Model.
Input: The corrupted comparison graph 𝐺 and the corrupted statistics 𝐲.
Output: An estimate 𝝅 ∈ ℝ𝑛

+ of the true normalized weight vector 𝝅∗.

1 Construct a LP as above and solve it: 𝐱 ← solution of LP.
2 For all (𝑖, 𝑗) ∈ 𝐸, let ̂𝑥(𝑖, 𝑗) = 𝟙{𝑥(𝑖,𝑗)≥log(𝑛𝑝)/(5 log𝑛)}.
3 If ̂𝑥(𝑖, 𝑗) = 1, then remove the edge (𝑖, 𝑗) and create the graph 𝐺.
4 Compute the matrix 𝐏̃ as shown above.
5 Compute its leading left eigenvector 𝝅.

5.4 Main Result

Now we show that the Static Adversarial Spectral Ranking Algorithm actually works, i.e. it
provides a good estimate of 𝝅∗ = 𝝅∗.

Theorem 5.4.1. Suppose that 𝑝 ≥ 𝑘1
log𝑛

𝑛 and 𝛾 ≤ 𝑘2
log(𝑛𝑝)
log𝑛 for suitable constants 𝑘1, 𝑘2 > 0.

Then there are constants 𝐶1, 𝐶2 > 0 such that if

𝐿 ≥ 𝑏7 ⎛⎜
⎝

𝑐1√ log𝑛
(1 − 𝛾)𝑛𝑝 + 𝑐2ℓ𝑛,𝑝

𝛾
1 − 𝛾

√𝑛2 log𝑛⎞⎟
⎠

2

, (5.1)

for some constants 𝑐1, 𝑐2 > 0, then with probability at least 1 − 1
poly(𝑛) , one has

∥𝝅 − 𝝅∗∥2
∥𝝅∗∥2

≤ 𝐶1
𝑏9/2

√(1 − 𝛾)𝑛𝑝𝐿
+ 𝐶2ℓ𝑛,𝑝

𝛾
1 − 𝛾

√𝑛2 log𝑛
𝐿 , (5.2)

where ℓ𝑛,𝑝 = 4 (4 + log𝑛
log(𝑛𝑝)) (1 + 𝑏).

Remark 5.4.2. For 𝛾 = 0, i.e. when we have no corruption, Theorem 5.4.1 reduces to
Theorem 3.3.1. Note that in this case 𝐺 is a just a connected subgraph of 𝐺∗ so the basic
algorithm will still give us an estimate of the truthful BTL weights 𝐰.

The rest of the chapter is dedicated to a proof of the above theorem. Let 𝐺 = 𝐺𝑢𝑐 ∪ 𝐺𝑐,
where 𝐺𝑢𝑐 = ([𝑛], 𝐸𝑢𝑐) is the subgraph of 𝐺 that contains all the uncorrupted edges of 𝐺
and 𝐺𝑐 = ([𝑛], 𝐸𝑐) are the rest of them, the corrupted ones. Similarly, let 𝐺 = 𝐺𝑢𝑐 ∪ 𝐺𝑐,
with 𝐺𝑢𝑐 = ([𝑛], 𝐸𝑢𝑐) and 𝐺𝑐 = ([𝑛], 𝐸𝑐) be the uncorrupted and corrupted decomposition
of the pruned graph. Note that even if some corrupted edges were pruned, there is still the
possibility that there are some left. By Remark 5.1.6 we get 𝑑𝑖 (𝐺𝑐) ≤ 𝛾𝑑𝑖 and obviously
𝑑𝑖(𝐺𝑐) ≤ 𝑑𝑖 (𝐺𝑐), since we are not adding any new edges. Hence 𝑑𝑖(𝐺𝑐) ≤ 𝛾𝑑𝑖, so 𝑑max(𝐺𝑐) ≤
𝛾𝑑max.
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Let 𝐏̃𝑢𝑐 = [𝑃̃𝑢𝑐,𝑖𝑗] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑢𝑐,𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸𝑢𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑢𝑐

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺𝑢𝑐
(𝑖)

𝑦𝑖𝑘 if 𝑖 = 𝑗

0 otherwise,

and 𝐏̃𝑐 = [𝑃̃𝑐,𝑖𝑗] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑐,𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

−
1

𝑑max
∑

𝑘∈𝑁𝐺𝑐
(𝑖)

𝑦𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

Note that 𝐏̃ = 𝐏̃𝑢𝑐 + 𝐏̃𝑐.

Similarly let 𝐏̃∗
𝑢𝑐 = [𝑃̃∗

𝑢𝑐,𝑖𝑗] ∈ ℝ𝑛×𝑛
+ with

𝑃̃∗
𝑢𝑐,𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦∗
𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸𝑢𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑢𝑐

1 −
1

𝑑max
∑

𝑘∈𝑁𝐺𝑢𝑐
(𝑖)

𝑦∗
𝑖𝑘 if 𝑖 = 𝑗

0 otherwise,

and 𝐏̃∗
𝑐 = [𝑃̃∗

𝑐,𝑖𝑗] ∈ ℝ𝑛×𝑛
+ with

𝑃̃∗
𝑐,𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ 𝑦∗
𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

−
1

𝑑max
∑

𝑘∈𝑁𝐺𝑐
(𝑖)

𝑦∗
𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

Note that 𝐏̃∗ = 𝐏̃∗
𝑢𝑐 + 𝐏̃∗

𝑐 .

Now let
𝚫 = 𝐏̃ − 𝐏̃∗ = (𝐏̃𝑢𝑐 − 𝐏̃∗

𝑢𝑐) + (𝐏̃𝑐 − 𝐏̃∗
𝑐) = 𝚫𝑢𝑐 + 𝚫𝑐.

Then
‖𝚫‖2 ≤ ∥𝚫𝑢𝑐∥2 + ∥𝚫𝑐∥2 .

For the proof we need the following lemmas.

Lemma 5.4.3. There exists a constant 𝐶1 ≥ 1 such that with probability at least 1 − 1
poly(𝑛) ,

it holds

∥𝚫𝑢𝑐∥2 ≤ 𝐶1√ log𝑛
𝑑max𝐿

.
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Proof. Apply Proposition A.1.1 with 𝐿𝑖𝑗 = 𝐿 and

𝑍𝑙
𝑖𝑗 =

⎧{
⎨{⎩

1
𝐿𝑑max

(𝑌𝑙
𝑖𝑗 − 𝑦∗

𝑖𝑗) if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

0 otherwise,

where 𝑌𝑙
𝑖𝑗 ∼ Bernoulli (𝑦∗

𝑖𝑗). Then 𝐿max = 𝐿, 𝐵 = 1
𝑑max𝐿

and 𝑁max = 𝑑max(𝐺𝑢𝑐) ≤ 𝑑max(𝐺) ≤
𝑑max(𝐺).

Lemma 5.4.4. It holds that

∥𝚫𝑐∥2 ≤ 4𝛾ℓ𝑛,𝑝
|𝐸|

𝑑max
√ log𝑛

𝐿 .

Proof. The entries of 𝚫𝑐 are given by

(Δ𝑐)𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑max

⋅ (𝑦𝑖𝑗 − 𝑦∗
𝑖𝑗) if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

− ∑
𝑘∈𝑁𝐺𝑐

(𝑖)
(Δ𝑐)𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

By Lemma 5.2.3 we have that

∣𝑦𝑖𝑗 − 𝑦∗
𝑖𝑗∣ ≤ ℓ𝑛,𝑝√ log𝑛

𝐿 , ∀(𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐸𝑐.

Let 𝐃 be the diagonal matrix containing the elements (𝚫𝑐)𝑖𝑖 and 𝐃′ = 𝚫𝑐 − 𝐃. As 𝐃 is
diagonal we have

∥𝚫𝑐∥2 ≤ ‖𝐃‖2 + ∥𝐃′∥2 ≤ max
𝑖

∣(Δ)𝑖𝑖∣ + ∥𝐃′∥𝐹 .

Let us bound ∥𝐃′∥𝐹. We have that

∣(Δ𝑐)𝑖𝑗∣ ≤
1

𝑑max
ℓ𝑛,𝑝√ log𝑛

𝐿 ,

so

∥𝐃′∥𝐹 ≤
2 ∣𝐸𝑐∣
𝑑max

ℓ𝑛,𝑝√ log𝑛
𝐿

≤
2𝛾 |𝐸|
𝑑max

ℓ𝑛,𝑝√ log𝑛
𝐿 ,

since
2 ∣𝐸𝑐∣ = ∑ 𝑑𝑖 (𝐺𝑐) ≤ ∑ 𝛾𝑑𝑖 = 2𝛾 |𝐸| .

In order to bound ‖𝐃‖2, we simply note that

∣(Δ𝑐)𝑖𝑖∣ =
∣∣∣∣∣
− ∑

𝑘∈𝑁𝐺𝑐
(𝑖)

(Δ𝑐)𝑖𝑘

∣∣∣∣∣
≤ 𝑑max(𝐺𝑐)max

𝑗≠𝑖
∣(Δ𝑐)𝑖𝑗∣

≤
𝑑max(𝐺𝑐)

𝑑max
ℓ𝑛,𝑝√ log𝑛

𝐿

≤ 𝛾ℓ𝑛,𝑝√ log𝑛
𝐿 .
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Hence

∥𝚫𝑐∥2 ≤ (1 +
2 |𝐸|
𝑑max

) 𝛾ℓ𝑛,𝑝√ log𝑛
𝐿 ≤

4 |𝐸|
𝑑max

𝛾ℓ𝑛,𝑝√ log𝑛
𝐿 .

Lemma 5.4.5. Since 𝑛 ≥ 𝑘1
𝑝 log𝑛 we have that with probability at least 1 − 1

poly(𝑛) it holds

∥𝝅∗⊤𝚫𝑢𝑐∥2 ≤
𝐶𝑏

√𝑑max𝐿
∥𝝅∗∥2 .

Proof. This is a direct application of Proposition A.1.2: Construct 𝚫 as in the proof of
Lemma 5.4.3 and let 𝐚 = 𝝅∗ to get exactly what we want.

Lemma 5.4.6. If there exist constants 𝐶1, 𝐶2 such that

𝐶1√ log𝑛
𝑑max𝐿

+ 𝐶2𝛾ℓ𝑛,𝑝
|𝐸|

𝑑max
√ log𝑛

𝐿 ≤
̃𝜉 ̃𝑑min

4𝑏7/2 ̃𝑑𝑚𝑎𝑥
, (5.3)

then with probability at least 1 − 1
poly(𝑛) we have

1 − 𝜆max(𝐏̃∗) − ‖𝚫‖𝝅∗ ≥
̃𝜉 ̃𝑑min

4𝑏7/2 ̃𝑑𝑚𝑎𝑥
,

where ̃𝜉 is the spectral gap of the pruned graph 𝐺.

Proof. Use Proposition A.2.2 in combination with Lemma 5.4.3 and finish the proof as in
Lemma 3.3.5.

Lemma 5.4.7 ([Aga+20]: Lemma 7). Let 𝐺 be the pruned graph. Then there is a constant
𝐶1 such that with probability at least 1 − 1

poly(𝑛) one has

̃𝜉 ≥ 𝐶1,

where ̃𝜉 is the spectral gap of 𝐺. Moreover, there is a constant 𝐶2 such that

max
𝑖,𝑗∈[𝑛]

̃𝑑𝑖
̃𝑑𝑗
≤ 𝐶2.

Now we have all the tools to prove the main theorem.

Proof of Theorem 5.4.1. We have

‖𝝅 − 𝝅∗‖2 ≤
1

√𝜋∗
min

‖𝝅 − 𝝅∗‖𝝅∗, by Proposition A.3.3

≤
1

√𝜋∗
min

∥𝝅∗⊤𝚫∥𝝅∗

1 − 𝜆max (𝐏̃∗) − ‖𝚫‖𝝅∗
, by Theorem A.3.4

≤
1

√𝜋∗
min

4𝑏3 ̃𝑑max
̃𝜉 ̃𝑑min

∥𝝅∗⊤𝚫∥𝝅∗ , by Lemma 5.4.6

≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min
∥𝝅∗⊤𝚫∥2 , by Proposition A.3.3

≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min
(∥𝝅∗⊤𝚫𝑢𝑐∥2 + ∥𝝅∗⊤𝚫𝑐∥2)
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Hence by Cauchy-Schwarz, Lemma 5.4.5 and Lemma 5.4.4 we have

‖𝝅 − 𝝅∗‖2 ≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min

⎛⎜⎜⎜
⎝

𝐶𝑏

√𝑑max𝐿
+ 4𝛾ℓ𝑛,𝑝

|𝐸|
𝑑max

√ log𝑛
𝐿

⎞⎟⎟⎟
⎠

∥𝝅∗∥2 . (5.4)

Now by Lemma 5.4.7, Lemma 2.3.4 and Lemma 5.1.5, Equation (5.3) turns into Equa-
tion (5.1) and Equation (5.4) turns into Equation (5.2), as wanted.



Chapter 6

The Dynamic Adversarial BTL Model

In this chapter we are going to unify all the BTL models that we have discussed so far. The
new model called Dynamic Adversarial BTL Model is essentially the Dynamic BTL Model
with the presence of an adversary. In particular, in this setup all of the previous models are
just a special case of this one. Then we will combine Algorithm 2 with Algorithm 4 into one
algorithm, named Dynamic Adversarial Spectral Ranking Algorithm. Moreover, we are going
to prove that our algorithm works with high probability.

6.1 Problem Setup

Consider the Dynamic BTL Model, as discussed in Chapter 4. To reiterate, suppose that we
have a time grid 𝒯 and 𝑛 items that we want to compare. For each time instance 𝑡 ∈ 𝒯 we
assume that here is a latent weight 𝐰∗(𝑡) ∈ ℝ𝑛

+ associated with each item. The outcome
of each pairwise comparison at the time 𝑡 depends only on the weights 𝑤∗

𝑖 (𝑡) and 𝑤∗
𝑗 (𝑡).

Moreover, in order to get a meaningful recovery, we make the additional assumption:

Assumption 6.1.1. There exists 𝑀 ≥ 0 such that

∣∣∣∣

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡) −
𝑤∗

𝑗 (𝑡′)
𝑤∗

𝑖 (𝑡′) + 𝑤∗
𝑗 (𝑡′)

∣∣∣∣
≤ 𝑀 ∣𝑡 − 𝑡′∣ , (6.1)

for all 𝑡, 𝑡′ ∈ 𝒯 and 𝑖 ≠ 𝑗 ∈ [𝑛].

We are also given a sequence of comparison graphs 𝐺∗
𝑡 = ([𝑛], 𝐸∗

𝑡 ) where (𝑖, 𝑗) ∈ 𝐸∗
𝑡 if and

only if the items 𝑖 and 𝑗 have been compared at the time instance 𝑡 ∈ 𝒯. Furthermore, we
assume that the graphs {𝐺∗

𝑡 }𝑇
𝑡=1 are positively correlated Erdős-Rényi graphs, as descibed in

Section 2.4. We make no assumption about the connectivity of the graphs 𝐺∗
𝑡 . Moreover,

for each (𝑖, 𝑗) ∈ 𝐸∗
𝑡 , we assume that 𝐿 independent comparisons take place between items 𝑖

and 𝑗 at 𝑡 ∈ 𝒯. Then we turn each comparison graph 𝐺∗
𝑡 into a weighted graph by assigning

as weights 𝑦𝑖𝑗(𝑡) the fraction of wins of 𝑗 over 𝑖 at 𝑡 ∈ 𝒯, i.e.

𝑦𝑖𝑗(𝑡) =
1
𝐿

𝐿
∑
𝑙=1

𝑌𝑙
𝑖𝑗(𝑡),

39
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where

𝑌𝑙
𝑖𝑗(𝑡) ∼ Bernoulli⎛⎜

⎝

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡)
⎞⎟
⎠

.

Also, as before, let

𝑦∗
𝑖𝑗(𝑡) =

𝑤∗
𝑗 (𝑡)

𝑤∗
𝑖 (𝑡) + 𝑤∗

𝑗 (𝑡) .

Adversary. Now we assume that there is an adversary having complete knowledge of all
truthful graphs 𝐺∗

𝑡 , as well as the true weights 𝐰∗(𝑡). This adversary can subsequently
contaminate some fraction of each 𝐸∗

𝑡 by adding new edges with arbitrary weights, deleting
and corrupting existing edges and weigths. More formally, after fixing the truthful graphs 𝐺∗

𝑡
the adversary chooses 𝐺𝑡 ∈ Γ(𝐺∗

𝑡 , 𝛾𝑡), 𝛾𝑡-contaminated versions of 𝐺∗
𝑡 . Finally, we assume

that the union of all the contaminated graphs ∪𝑇
𝑡=1𝐺𝑡 is connected.

Goal. The goal is that given a 𝑡 ∈ 𝒯, we want to estimate the normalized weight vector

𝝅∗(𝑡) =
𝐰∗(𝑡)

‖𝐰∗(𝑡)‖1
,

using the corrupted comparison graphs {𝐺𝑡}
𝑇
𝑡=1.

Remark 6.1.2. Note that this model is indeed a generalization of all the previous models.

1. If 𝐺∗
𝑡 = 𝐺∗, 𝛾𝑡 = 𝛾 and 𝐺𝑡 = 𝐺 ∈ Γ(𝐺∗, 𝛾) for all 𝑡 ∈ 𝒯 and 𝑀 = 0, then we get the

Static Adversarial BTL Model, presented in Chapter 5.

2. If 𝛾𝑡 = 0, then 𝐺𝑡 = 𝐺∗
𝑡 for all 𝑡 ∈ 𝒯. Hence we get the Dynamic BTL Model, presented

in Chapter 4.

3. If 𝐺∗
𝑡 = 𝐺∗ and 𝛾𝑡 = 0 then we have that 𝐺𝑡 = 𝐺∗. If moreover 𝑀 = 0, then we get

the Static BTL model, presented in Chapter 3.

6.2 Dynamic Adversarial Spectral Ranking Algorithm

We are going to generalize the Spectral Ranking Algorithm (Section 3.2) in this setting. The
idea is to consider the union of the graphs 𝐺𝑡 in a time neighborhood such that the union is
connected and then apply the Static Adversarial Spectral Ranking Algorithm (Algorithm 4).

Recall that 𝑁𝛿(𝑡) = {𝑡 − 𝛿, … , 𝑡, … , 𝑡 + 𝛿} ∩ 𝒯 for some 𝛿 ∈ ℕ. Now let 𝐺𝛿
𝑡 = ([𝑛], 𝐸𝛿

𝑡 ), where
𝐸𝛿

𝑡 = ∪𝑡′∈𝑁𝛿(𝑡)𝐸𝑡′, be the union graph that corresponds to the time neighborhood 𝑁𝛿(𝑡). We
will abuse the notation and we will denote the union graph just by 𝐺. Note that the union
graph 𝐺 is actually a contaminated version of 𝐺∗, the union of the truthful comparison
graphs, according to the following proposition.

Proposition 6.2.1. Let 𝐺∗
𝑡 = ([𝑛], 𝐸∗

𝑡 ) for 𝑡 = 1, … , 𝑇 be a sequence of (truthful) graphs and
let 𝐺𝑡 = ([𝑛], 𝐸𝑡) ∈ Γ(𝐺∗

𝑡 , 𝛾𝑡) be a 𝛾𝑡-contaminated version of 𝐺∗
𝑡 for all 𝑡 = 1, … , 𝑇. Let

𝐺∗ = ([𝑛], 𝐸∗) = ∪𝑇
𝑡=1𝐺∗

𝑡 = ([𝑛], ∪𝑇
𝑡=1𝐸∗

𝑡 ) and 𝐺 = ([𝑛], 𝐸) = ∪𝑇
𝑡=1𝐺𝑡 = ([𝑛], ∪𝑇

𝑡=1𝐸𝑡) be
the truthful union graph and the contaminated union graph respectively. Then 𝐺 ∈ Γ(𝐺∗, 𝛾)
for 𝛾 = ∑𝑇

𝑡=1 𝛾𝑡, or in words the union of contaminated version of truthful graphs is a
contaminated version of the union of truthful graphs.
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Proof. Since 𝐺𝑡 ∈ Γ(𝐺∗
𝑡 , 𝛾𝑡) we have |𝐸𝑡,𝑑(𝑢) ∪ 𝐸𝑡,𝑐(𝑢)| ≤ 𝛾𝑡|𝐸∗

𝑡 (𝑢)| for all 𝑢 ∈ [𝑛]. Now let
𝐸𝑐(𝑢) = ∪𝑇

𝑡=1𝐸𝑡,𝑐(𝑢) and note that 𝐸∗(𝑢) = ∪𝑇
𝑡=1𝐸∗

𝑡 (𝑢) and 𝐸(𝑢) = ∪𝑇
𝑡=1𝐸𝑡(𝑢). We have

𝐸𝑑(𝑢) = 𝐸∗(𝑢) ∖ 𝐸(𝑢)

= (
𝑇
⋃
𝑡=1

𝐸∗
𝑡 (𝑢)) ∖ (

𝑇
⋃
𝑡=1

𝐸𝑡(𝑢))

⊆
𝑇
⋃
𝑡=1

𝐸∗
𝑡 (𝑢) ∖ 𝐸𝑡(𝑢)

=
𝑇
⋃
𝑡=1

𝐸𝑡,𝑑(𝑢)

Hence

|𝐸𝑑(𝑢) ∪ 𝐸𝑐(𝑢)| ≤ |
𝑇
⋃
𝑡=1

𝐸𝑡,𝑑(𝑢) ∪
𝑇
⋃
𝑡=1

𝐸𝑡,𝑐(𝑢)|

= |
𝑇
⋃
𝑡=1

(𝐸𝑡,𝑑(𝑢) ∪ 𝐸𝑡,𝑐(𝑢)) |

≤
𝑇

∑
𝑡=1

|𝐸𝑡,𝑑(𝑢) ∪ 𝐸𝑡,𝑐(𝑢)|

≤
𝑇

∑
𝑡=1

𝛾𝑡|𝐸∗
𝑡 (𝑢)|

≤ ⎛⎜
⎝

𝑇
∑
𝑡=1

𝛾𝑡⎞⎟
⎠

|𝐸∗(𝑢)|,

as wanted.

Recall that 𝑁𝑖𝑗,𝛿(𝑡) = {𝑡′ ∈ 𝑁𝛿(𝑡)|(𝑖, 𝑗) ∈ 𝐸𝑡′} is the set of the time instances in 𝑁𝛿(𝑡) where
𝑖 and 𝑗 are being compared. Then for the union graph 𝐺 = 𝐺𝛿

𝑡 , consider

𝑦𝑖𝑗,𝛿(𝑡) =
1

|𝑁𝑖𝑗,𝛿(𝑡)| ∑
𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)

𝑦𝑖𝑗(𝑡′),

𝑦∗
𝑖𝑗,𝛿(𝑡) =

1
|𝑁𝑖𝑗,𝛿(𝑡)| ∑

𝑡′∈𝑁𝑖𝑗,𝛿(𝑡)
𝑦∗

𝑖𝑗(𝑡′),

where 𝑦𝑖𝑗(𝑡′) are the corrupted statistics, i.e. the weights of the corrupted graphs 𝐺𝑡′.

Notation 6.2.2. At this point we fix a time instance 𝑡 ∈ 𝒯. Assume that we want to estimate
the true BTL weights 𝝅∗(𝑡). From now on we will drop 𝑡 (and sometimes 𝛿) from the
notation in order to not obfuscate the presentation.

Now that we know that 𝐺 ∈ Γ(𝐺∗, 𝛾) we can follow the procedure described in Section 5.3,
i.e. create a LP and prune from the graph 𝐺 all the edges with “high” 𝑥(𝑒). Let 𝐺 = ([𝑛], 𝐸)
be the pruned subgraph of the union graph 𝐺. 𝐺 is connected with high probability, see
Lemma 5.2.3.
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Let 𝐏̃𝛿 = [𝑃̃𝑖𝑗,𝛿] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑖𝑗,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
⋅ ∑

𝑘∈𝑁𝐺(𝑖)
𝑦𝑖𝑘,𝛿 if 𝑖 = 𝑗

0 otherwise,

where 𝑑𝛿,𝑚𝑎𝑥 is the maximum degree of the unpruned union graph 𝐺.

Also let 𝐏̃∗ = [𝑃̃∗
𝑖𝑗] ∈ ℝ𝑛×𝑛

+ with

𝑃̃∗
𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦∗
𝑖𝑗 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺(𝑖)
𝑦∗

𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

Observe that 𝐏̃∗ is time reversible with stationary distribution 𝝅∗ = 𝝅∗, since it satisfies the
detailed balance equation 𝜋∗

𝑖 𝑃̃∗
𝑖𝑗 = 𝜋∗

𝑗 𝑃̃∗
𝑗𝑖 for all 𝑖, 𝑗 ∈ [𝑛].

In summary, we have the following algorithm:

Algorithm 5: Spectral Ranking Algorithm for the Dynamic Adversarial BTL Model.
Input: The time grid 𝒯, a time instance 𝑡 ∈ 𝒯, the corrupted graphs 𝐺𝑡′ and the

corrupted statistics 𝐲(𝑡′) for all 𝑡′ ∈ 𝒯
Output: An estimate 𝝅 ∈ ℝ𝑛

+ of the true normalized weight vector 𝝅∗.

1 Choose 𝛿 ∈ ℕ such that the union graph 𝐺 = 𝐺𝛿
𝑡 is connected.

2 Construct and solve a LP with respect to 𝐺 as in Section 5.3. Let 𝐱 be a solution.
3 For all (𝑖, 𝑗) ∈ 𝐸, let ̂𝑥(𝑖, 𝑗) = 𝟙{𝑥(𝑖,𝑗)≥log(𝑛𝑝)/(5 log𝑛)}.
4 If ̂𝑥(𝑖, 𝑗) = 1, then remove the edge (𝑖, 𝑗) from 𝐺 and create the graph 𝐺.
5 Compute the matrix 𝐏̃𝛿 as shown above.
6 Compute the leading left eigenvector 𝝅 of 𝐏̃𝛿.

6.3 Main Results

First we present a modification of Theorem 5.1.2 for our setup. This theorem gives the
optimal information theoretic bound for 𝛾 in our setup.

Theorem 6.3.1. Let 𝐺∗
𝑡 ∼ 𝒢(𝑛, 𝑝𝑡) for 𝑡 = 1, … , 𝑇 be a sequence of Erdős-Rényi that correspond

to truthful comparison graphs. Let 𝐺𝑡 ∈ Γ(𝐺∗
𝑡 , 𝛾𝑡), for all 𝑡 = 1, … , 𝑇. Let 𝜀 > 0 and

suppose that ∑𝑡 𝛾𝑡 < 1
4 − 𝜀. Then there exists a sufficiently large constant 𝑐 > 1 such that

if ∑𝑡 𝑝𝑡 ≥ log𝑛 − log(𝑛 − 𝑐 log𝑛), then with probability at least 1 − 1/poly(𝑛), the cut-
majority condition described in Theorem 5.1.2 is satisfied for every cut in 𝐺 = ∪𝑡𝐺𝑡, and as a
consequence, the true weights 𝐰 are uniquely identifiable as 𝐿 → ∞.

Proof. This follows immediately from Proposition 2.3.9, Proposition 6.2.1 and Theorem 5.1.8.
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Now we show that the Dynamic Adversarial Spectral Ranking Algorithm actually works, i.e.
it provides a good estimate of 𝝅∗ = 𝝅∗. Recall that 𝐺∗ is the truthful union graph, which is
an Erdős-Rényi graph with probability 𝑝. Then 𝐺 is the contaminated union graph, which is
a 𝛾-contaminated version of 𝐺. Finally, 𝐺 is the pruned graph. The parameter 𝑝 is given by

𝑝 = 1 − (1 − 𝑝𝑡−𝛿)
𝑡+𝛿
∏

𝑡′=𝑡−𝛿+1
(1 − (1 − 𝛼) 𝑝𝑡′)

and the parameter 𝛾 is given by

𝛾 =
𝑡+𝛿
∑

𝑡′=𝑡−𝛿
𝛾𝑡′.

Theorem 6.3.2. Suppose that 𝑝 ≥ 𝑘1
log𝑛

𝑛 and 𝛾 ≤ 𝑘2
log(𝑛𝑝)
log𝑛 for suitable constants 𝑘1, 𝑘2 > 0.

Then there are constants 𝐶1, 𝐶2, 𝐶3 > 0 such that if

𝑐1√ 𝛿 log𝑛
(1 − 𝛾)𝐿𝑛𝑝 + 𝑐2ℓ𝑛,𝑝

𝛾
1 − 𝛾

√𝑛2 log𝑛
𝐿 + 𝑐3𝑀𝑛𝛿 ≤ 𝑏−7/2, (6.2)

for some constants 𝑐1, 𝑐2, 𝑐3 > 0, then with probability at least 1 − 1
poly(𝑛) , one has

∥𝝅 − 𝝅∗∥2
∥𝝅∗∥2

≤ 𝐶1√ 𝑏9𝛿
(1 − 𝛾)𝐿𝑛𝑝 + 𝐶2ℓ𝑛,𝑝

𝛾
1 − 𝛾

√𝑛2 log𝑛
𝐿 + 𝐶3𝑀𝑛𝑏7/2𝛿, (6.3)

where ℓ𝑛,𝑝 = 4 (4 + log𝑛
log(𝑛𝑝)) (1 + 𝑏).

Remark 6.3.3. 1. For 𝐺∗
𝑡 = 𝐺∗, 𝛾𝑡 = 𝛾, 𝐺𝑡 = 𝐺 ∈ Γ(𝐺∗, 𝛾) and 𝑀 = 0, the Theo-

rem 6.3.2 reduces to Theorem 5.4.1.

2. For 𝛾𝑡 = 0 for all 𝑡 ∈ 𝒯 we get 𝛾 = 0 so the Theorem 6.3.2 reduces to Theorem 4.4.1.

3. For 𝐺∗
𝑡 = 𝐺∗ and 𝛾𝑡 = 0, the Theorem 6.3.2 reduces to Theorem 3.3.1.

The rest of the chapter is dedicated to a proof of the above theorem. Let ̂̃𝐏𝛿 = [ ̂̃𝑃𝑖𝑗,𝛿] ∈ ℝ𝑛×𝑛
+

with

̂̃𝑃𝑖𝑗,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦∗
𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸

1 −
1

𝑑𝛿,max
⋅ ∑

𝑘∈𝑁𝐺(𝑖)
𝑦∗

𝑖𝑘,𝑑 if 𝑖 = 𝑗

0 otherwise.

As in Chapter 5 let 𝐺 = 𝐺𝑢𝑐 ∪ 𝐺𝑐 with 𝐺𝑢𝑐 = ([𝑛], 𝐸𝑢𝑐) and 𝐺𝑐 = ([𝑛], 𝐸𝑐) and also let
𝐺 = 𝐺𝑢𝑐 ∪ 𝐺𝑐 with 𝐺𝑢𝑐 = ([𝑛], 𝐸𝑢𝑐) and 𝐺𝑐 = ([𝑛], 𝐸𝑐) be the uncorrupted and corrupted
decompositions of the union graph and the pruned union graph. By Remark 5.1.6 we get
𝑑𝑖 (𝐺𝑐) ≤ 𝛾𝑑𝑖 and obviously 𝑑𝑖(𝐺𝑐) ≤ 𝑑𝑖 (𝐺𝑐), since we are not adding any new edges.
Hence 𝑑𝑖(𝐺𝑐) ≤ 𝛾𝑑𝑖 and 𝑑max(𝐺𝑐) ≤ 𝛾𝑑max.
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Let 𝐏̃𝑢𝑐,𝛿 = [𝑃̃𝑖𝑗,𝑢𝑐,𝛿] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑖𝑗,𝑢𝑐,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸𝑢𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑢𝑐

1 −
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺𝑢𝑐
(𝑖)

𝑦𝑖𝑘,𝛿 if 𝑖 = 𝑗

0 otherwise,

and 𝐏̃𝑐,𝛿 = [𝑃̃𝑖𝑗,𝑐,𝛿] ∈ ℝ𝑛×𝑛
+ with

𝑃̃𝑖𝑗,𝑐,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

−
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺𝑐
(𝑖)

𝑦𝑖𝑘,𝛿 if 𝑖 = 𝑗

0 otherwise.

Note that 𝐏̃𝛿 = 𝐏̃𝑢𝑐,𝛿 + 𝐏̃𝑐,𝛿.

Similarly, let ̂̃𝐏𝑢𝑐,𝛿(𝑡) = [ ̂̃𝑃𝑖𝑗,𝑢𝑐,𝛿] ∈ ℝ𝑛×𝑛
+ with

̂̃𝑃𝑖𝑗,𝑢𝑐,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦∗
𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸𝑢𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑢𝑐

1 −
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺𝑢𝑐
(𝑖)

𝑦∗
𝑖𝑘,𝛿 if 𝑖 = 𝑗

0 otherwise,

and ̂̃𝐏𝑐,𝛿 = [ ̂̃𝑃𝑖𝑗,𝑐,𝛿] ∈ ℝ𝑛×𝑛
+ with

̂̃𝑃𝑖𝑗,𝑐,𝛿 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ 𝑦∗
𝑖𝑗,𝛿 if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

−
1

𝑑𝛿,max
∑

𝑘∈𝑁𝐺𝑐
(𝑖)

𝑦∗
𝑖𝑘,𝛿 if 𝑖 = 𝑗

0 otherwise.

Note that ̂̃𝐏𝛿(𝑡) = ̂̃𝐏𝑢𝑐,𝛿 + ̂̃𝐏𝑐,𝛿.

Let

𝚫 = 𝐏̃𝛿 − 𝐏̃∗
𝛿

= (𝐏̃𝛿 − ̂̃𝐏𝛿) + ( ̂̃𝐏𝛿 − 𝐏̃∗
𝛿)

= (𝐏̃𝑢𝑐,𝛿 − ̂̃𝐏𝑢𝑐,𝛿) + (𝐏̃𝑐,𝛿 − ̂̃𝐏𝑐,𝛿) + ( ̂̃𝐏𝛿 − 𝐏̃∗
𝛿)

= 𝚫1 + 𝚫2 + 𝚫3.

For the proof we need the following lemmas.

Lemma 6.3.4. There exists a constant 𝐶1 ≥ 1 such that with probability at least 1 − 1
poly(𝑛) ,

it holds

∥𝚫1∥2 ≤ 𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
.
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Proof. Apply Proposition A.1.1 with 𝐿𝑖𝑗 = 𝐿𝑁𝑖𝑗,𝛿 and

𝑍𝑙
𝑖𝑗 =

⎧{{
⎨{{⎩

1
𝐿𝑑𝛿,max ∣𝑁𝑖𝑗,𝛿∣

(𝑌𝑙
𝑖𝑗 − 𝑦∗

𝑖𝑗) if (𝑖, 𝑗) ∈ 𝐸𝑢𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑢𝑐

0 otherwise,

where 𝑌𝑙
𝑖𝑗 ∼ Bernoulli (𝑦∗

𝑖𝑗). Then 𝐿max = 𝐿𝑁𝛿,max, 𝐵 = 1
𝐿𝑑𝛿,max𝑁𝛿,max

and

𝑁max = 𝑑max(𝐺𝑢𝑐) ≤ 𝑑max(𝐺) ≤ 𝑑max(𝐺).

Lemma 6.3.5. It holds that

∥𝚫2∥2 ≤ 4𝛾ℓ𝑛,𝑝
|𝐸|

𝑑𝛿,max
√ log𝑛

𝐿 .

Proof. The entries of 𝚫2 are given by

(Δ2)𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

1
𝑑𝛿,max

⋅ (𝑦𝑖𝑗,𝛿(𝑡) − 𝑦∗
𝑖𝑗,𝛿(𝑡)) if (𝑖, 𝑗) ∈ 𝐸𝑐 or (𝑗, 𝑖) ∈ 𝐸𝑐

− ∑
𝑘∈𝑁𝐺𝑐

(𝑖)
(Δ2)𝑖𝑘 if 𝑖 = 𝑗

0 otherwise.

By Lemma 5.2.3 we have that

∣𝑦𝑖𝑗,𝛿 − 𝑦∗
𝑖𝑗,𝛿∣ ≤

1
∣𝑁𝑖𝑗,𝛿∣

∑
𝑡′∈𝑁𝑖𝑗,𝛿

∣𝑦𝑖𝑗 − 𝑦∗
𝑖𝑗∣

≤ ℓ𝑛,𝑝√ log𝑛
𝐿 ,

for all (𝑖, 𝑗) ∈ 𝐸𝑐. Let 𝐃 be the diagonal matrix containing the elements (Δ2)𝑖𝑖 and 𝐃′ =
𝚫2 − 𝐃. As 𝐃 is diagonal we have

∥𝚫2∥2 ≤ ‖𝐃‖2 + ∥𝐃′∥2 ≤ max
𝑖

∣(Δ2)𝑖𝑖∣ + ‖𝐃′‖𝐹.

Let us bound ∥𝐃′∥𝐹. We have that

∣(Δ2)𝑖𝑗∣ ≤
1

𝑑𝛿,max
ℓ𝑛,𝑝√ log𝑛

𝐿 ,

so

∥𝐃′∥𝐹 ≤
2 ∣𝐸𝑐∣
𝑑𝛿,max

ℓ𝑛,𝑝√ log𝑛
𝐿 ≤

2𝛾 |𝐸|
𝑑𝛿,max

ℓ𝑛,𝑝√ log𝑛
𝐿 ,

since 2 ∣𝐸𝑐∣ = ∑ 𝑑𝑖 (𝐺𝑐) ≤ ∑ 𝛾𝑑𝑖 = 2𝛾 |𝐸|. In order to bound ‖𝐃‖2, we simply note that

∣(Δ2)𝑖𝑖∣ =
∣∣∣∣∣
− ∑

𝑘∈𝑁𝐺𝑐
(𝑖)

(Δ2)𝑖𝑘

∣∣∣∣∣
≤ 𝑑max (𝐺𝑐)max

𝑗≠𝑖
∣(Δ2)𝑖𝑗∣

≤
𝑑max (𝐺𝑐)

𝑑𝛿,max
ℓ𝑛,𝑝√ log𝑛

𝐿

≤ 𝛾ℓ𝑛,𝑝√ log𝑛
𝐿 .
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Hence

∥𝚫2∥2 ≤ (1 +
2 |𝐸|

𝑑𝛿,max
) 𝛾ℓ𝑛,𝑝√ log𝑛

𝐿 ≤
4 |𝐸|

𝑑𝛿,max
𝛾ℓ𝑛,𝑝√ log𝑛

𝐿 .

Lemma 6.3.6. It holds that
∥𝚫3∥2 ≤ 4

𝑀𝛿 |𝐸|
𝑑𝛿,max

.

Proof. It is the same proof as in Lemma 4.4.5.

Lemma 6.3.7. Since 𝑛 ≥ 𝑘1
𝑝 log𝑛 we have that with probability at least 1 − 1

poly(𝑛) it holds

∥𝝅∗⊤𝚫1∥2 ≤ 𝐶𝑏√
𝑁𝛿,max

𝐿𝑑𝛿,max𝑁2
𝛿,min

∥𝝅∗∥2 .

Proof. This is a direct application of Proposition A.1.2: Construct 𝚫 as in the proof of
Lemma 6.3.4 and let 𝐚 = 𝝅∗ to get exactly what we want.

Lemma 6.3.8. If there exist constants 𝐶1, 𝐶2, 𝐶3 such that

𝐶1

√
√√
⎷

𝑁𝛿,max log𝑛
𝑁2

𝛿,min𝑑𝛿,max𝐿
+ 𝐶2𝛾ℓ𝑛,𝑝

|𝐸|
𝑑𝛿,max

√ log𝑛
𝐿 + 𝐶3

𝑀𝛿 |𝐸|
𝑑𝛿,max

≤
̃𝜉 ̃𝑑min

4𝑏7/2 ̃𝑑𝑚𝑎𝑥
, (6.4)

then with probability at least 1 − 1
poly(𝑛) we have

1 − 𝜆max(𝐏̃∗) − ‖𝚫‖𝝅∗ ≥
̃𝜉 ̃𝑑min

4𝑏7/2 ̃𝑑𝑚𝑎𝑥
,

where ̃𝜉 is the spectral gap of the pruned graph 𝐺.

Proof. Use Proposition A.2.2 in combination with Lemma 6.3.4 and finish the proof as in
Lemma 4.4.7.

Now we have all the tools to prove the main theorem.

Proof of Theorem 6.3.2. We have

∥𝝅 − 𝝅∗∥2 ≤
1

√𝜋∗
min

∥𝝅 − 𝝅∗∥𝝅∗ , by Proposition A.3.3

≤
1

√𝜋∗
min

∥𝝅∗⊤𝚫∥𝝅∗

1 − 𝜆max (𝐏̃∗) − ‖𝚫‖𝝅∗
, by Theorem A.3.4

≤
1

√𝜋∗
min

4𝑏3 ̃𝑑max
̃𝜉 ̃𝑑min

∥𝝅∗⊤𝚫∥𝝅∗ , by Lemma 5.4.6

≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min
∥𝝅∗⊤𝚫∥2 , by Proposition A.3.3

≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min
(∥𝝅∗⊤𝚫1∥2 + ∥𝝅∗⊤𝚫2∥2 + ∥𝝅∗⊤𝚫3∥2)
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Hence by Cauchy-Schwarz, Lemma 6.3.5, Lemma 6.3.6 and Lemma 6.3.7 we have

∥𝝅 − 𝝅∗∥2 ≤
4𝑏7/2 ̃𝑑max

̃𝜉 ̃𝑑min

⎛⎜⎜
⎝

𝐶𝑏√
𝑁𝛿,max

𝐿𝑑𝛿,max𝑁2
𝛿,min

+ 4𝛾ℓ𝑛,𝑝
|𝐸|

𝑑𝛿,max
√ log𝑛

𝐿 + 4
𝑀𝛿 |𝐸|

𝑇𝑑𝛿,max

⎞⎟⎟
⎠

∥𝝅∗∥2 .

(6.5)
Now by Lemma 5.4.7, Lemma 2.3.4, Lemma 5.1.5 and the fact that 1 ≤ 𝑁𝛿,min ≤ 𝑁𝛿,max ≤
∣𝑁𝛿(𝑡)∣ ≤ 2𝛿 + 1 ≤ 3𝛿, Equation (6.4) turns into Equation (6.2) and Equation (6.5) turns
into Equation (6.3), as wanted.





Chapter 7

Conclusion

7.1 Summary

In this thesis we gave an overview of the most recent results in the theory of ranking
distribution. In particular, we presented the Static, Dynamic and Adversarial BTL models
and we gave algorithms that solve each problem efficiently. Moreover, we proposed a more
general, unified model, the Dynamic Adversarial BTL model, where each of the previous
models is just a special case of our setup. Finally, we provided an algorithm that solves the
most general problem and we proved that it works with high probability.

7.2 Future Work

Here are a few questions that have arisen during the writing of this thesis.

• The Theorem 5.4.1 makes the “unnatural” assumption that 𝛾 ≤ 𝛾𝐿𝑃 = 𝑂 ( log(𝑛𝑝)
log𝑛 ).

But from Theorem 5.1.8 we know that the maximum 𝛾 is 1/4. Why do we have this
gap? Can we improve it?

• Can we extend our results to other models other than the BTL Model? Another popular
ranking model is the Mallows Model ([Mal57]).

• Another possible question to examine is whether we can use a different kind of
random graphs. In this thesis we worked only with Erdős-Rényi graphs. However,
there are many more kinds of random graphs, such as the Barabási–Albert Model,
the Bianconi–Barabási Model, the Random Geometric Graph (RGG) and the Random
Exponential Graph (REG).

• Throught our work in the dynamic setting we have only worked with discrete time
grids. Can we generalize our results using a continuous time grid such as 𝑇 = [0, 1]?

• Another interesting direction is to examine other kinds of adversarial corruption.
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Appendix A

Technical Tools

In this chapter we give detailed proofs of some technical results that we repeatedly use in
the main chapters.

A.1 Results about a special kind of random matrices

Proposition A.1.1. Let 𝑛 ≥ 1 and 𝐿𝑖,𝑗 ∈ ℕ for all 𝑖 < 𝑗 ∈ [𝑛]. Let 𝚫 = [Δ𝑖𝑗] ∈ ℝ𝑛×𝑛 be a
matrix defined by

Δ𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝐿𝑖𝑗

∑
𝑙=1

𝑍𝑙
𝑖𝑗 if 𝑖 < 𝑗

−Δ𝑗𝑖 if 𝑖 > 𝑗
− ∑

𝑘≠𝑖
Δ𝑖𝑘 if 𝑖 = 𝑗

,

where 𝑍𝑙
𝑖𝑗 are random variables such that:

• 𝑍𝑙
𝑖𝑗 are independent for all 𝑖, 𝑗, 𝑙.

• 𝔼 [𝑍𝑙
𝑖𝑗] = 0.

• ∣𝑍𝑙
𝑖𝑗∣ ≤ 𝐵.

Then there exists a constant 𝐶 ≥ 12 such that with probability at least 1 − 1
poly(𝑛) , it holds

‖𝚫‖2 ≤ 𝐶√𝐵2𝑁max𝐿max log𝑛, (A.1)

where
𝑁𝑖 = {𝑗 ∈ [𝑛] ∖ {𝑖} ∣ Δ𝑖𝑗 ≠ 0} , 𝑁max = max

𝑖
∣𝑁𝑖∣ and 𝐿max = max

𝑖,𝑗
𝐿𝑖𝑗.

Proof. Let 𝐃 = diag {Δ11, … , Δ𝑛𝑛} be the diagonal matrix with entries the main diagonal
of 𝚫 and let 𝚫′ = 𝚫 − 𝐃. Then 𝚫 = 𝐃 + 𝚫′, so ‖𝚫‖2 ≤ ‖𝐃‖2 + ‖𝚫′‖2. Note that 𝚫′ is
skew-symmetric. We will bound both ‖𝐃‖2 and ∥𝚫′∥2 by 𝐶√𝐵2𝑁max𝐿max log𝑛.
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Bounding ‖𝐃‖2: Since 𝐃 is diagonal we have ‖𝐃‖2 = max𝑖 ∣Δ𝑖𝑖∣, and moreover by definition
it is Δ𝑖𝑖 = − ∑𝑘∈𝑁𝑖

∑𝐿𝑖𝑘
𝑙=1 𝑍𝑙

𝑖𝑘. Hence by Hoeffding’s inequality (Theorem 2.2.3) we get

ℙ [∣Δ𝑖𝑖∣ > 𝑡] ≤ 2 exp
⎧{
⎨{⎩

−
2𝑡2

∑𝑘∈𝑁𝑖
∑𝐿𝑖𝑘

𝑙=1 (2𝐵)2

⎫}
⎬}⎭

= 2 exp
⎧{
⎨{⎩

−
𝑡2

2𝐵2 ∑𝑘∈𝑁𝑖
𝐿𝑖𝑘

⎫}
⎬}⎭

≤ 2 exp{−
𝑡2

2𝐵2𝑁max𝐿max
} .

Then for 𝑡 = 𝐶√𝐵2𝑁max𝐿max log𝑛 we have:

ℙ [∣Δ𝑖𝑖∣ > 𝐶√𝐵2𝑁𝐿max log𝑛] ≤ 2𝑛−𝐶2/2.

Now using the union bound and the above inequality we get:

ℙ [‖𝐃‖2 > 𝐶√𝐵2𝑁𝐿max log𝑛] ≤
𝑛

∑
𝑖=1

ℙ [∣Δ𝑖𝑖∣ > 𝐶√𝐵2𝑁𝐿max log𝑛]

≤ 𝑛 ⋅ 2𝑛−𝐶2/2

= 2𝑛−(𝐶2/2−1).

Since 𝐶2/2 − 1 ≥ 1 we have that with probability at least 1 − 1
poly(𝑛) it holds

‖𝐃‖2 ≤ 𝐶√𝐵2𝑁𝐿max log𝑛. (A.2)

Thus we have the wanted bound for ‖𝐃‖2.

Bounding ∥𝚫′∥2: We will discriminate two cases. Firstly, assume that 𝑁max ≤ log𝑛.

Recall the following standard inequality

∥𝚫′∥2 ≤ √‖𝚫′‖1 ‖𝚫′‖∞ = ∥𝚫′∥∞ ,

since 𝚫′ is skew-symmetric. Let

𝑅𝑖 = ∑
𝑗≠𝑖

∣Δ𝑖𝑗∣ = ∑
𝑗∈𝑁𝑖

∣
∣
∣
∣

𝐿𝑖𝑗

∑
𝑙=1

𝑍𝑙
𝑖𝑗
∣
∣
∣
∣

be the absolute row sum of the 𝚫′. Then by definition ∥𝚫′∥∞ = max𝑖 𝑅𝑖. Moreover let
𝒮𝑖 = {(𝜌1, … , 𝜌𝑁𝑖

)|𝜌𝑗 ∈ {−1, 1}}. Obviously ∣𝒮𝑖∣ = 2∣𝑁𝑖∣. Now using the union bound and
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Hoeffding’s inequality (Theorem 2.2.3) we have

ℙ [𝑅𝑖 > 𝑡] ≤ ∑
𝜌∈𝒮𝑖

ℙ ⎡
⎢
⎣

∑
𝑗∈𝑁𝑖

𝜌𝑗

𝐿𝑖𝑗

∑
𝑙=1

𝑍𝑙
𝑖𝑗 > 𝑡⎤⎥

⎦

≤ ∑
𝜌∈𝒮𝑖

exp
⎧{
⎨{⎩

−
2𝑡2

∑𝑗∈𝑁𝑖
∑𝐿𝑖𝑗

𝑙=1 (2𝐵)2

⎫}
⎬}⎭

≤ ∑
𝜌∈𝒮𝑖

exp{−
𝑡2

2𝐵2𝑁max𝐿max
}

= 2∣𝑁𝑖∣ exp{−
𝑡2

2𝐵2𝑁max𝐿max
}

≤ exp{𝑁max log 2 −
𝑡2

2𝐵2𝑁max𝐿max
} .

Setting 𝑡 = 𝐶
2

√𝐵2𝑁max𝐿max (log𝑛 + 𝑁max log 2) in the above we get

ℙ [𝑅𝑖 >
𝐶
2

√𝐵2𝑁max𝐿max(log𝑛 + 𝑁max log 2)]

≤ exp{𝑁max log 2 −
𝐶2/4𝐵2𝑁max𝐿max (log𝑛 + 𝑁max log 2)

2𝐵2𝑁max𝐿max
}

= exp{𝑁max log 2 −
𝐶2 (log𝑛 + 𝑁max log 2)

8 }

= 𝑛−𝐶2/82𝑁max(1−𝐶2/8)

≤ 𝑛−𝐶2/8,

since 𝐶 ≥ 2√2. Finally, by the union bound and the previous inequality we have

ℙ [∥𝚫′∥∞ >
𝐶
2

√𝐵2𝑁𝐿max (log𝑛 + 𝑁 log 2)] ≤ 𝑛 ⋅ 𝑛−𝐶2/8 = 𝑛−(𝐶2/8−1).

Hence with probability at least 1 − 1
poly(𝑛) we have

∥𝚫′∥2 ≤ ∥𝚫′∥∞

≤
𝐶
2

√𝐵2𝑁max𝐿max (log𝑛 + 𝑁 log 2)

≤
𝐶
2

√𝐵2𝑁max𝐿max (log𝑛 + log𝑛 log 2)

≤ 𝐶√𝐵2𝑁max𝐿max log𝑛,

as wanted.

Now assume that 𝑁max ≥ log𝑛. For each 𝑖 < 𝑗 with 𝑗 ∈ 𝑁𝑖, let 𝐔𝑙
𝑖𝑗 ∈ ℝ𝑛×𝑛 with all entries

equal to 0 except for
(𝐔𝑙

𝑖𝑗)𝑖𝑗
= 𝑍𝑙

𝑖𝑗 and (𝐔𝑙
𝑖𝑗)𝑗𝑖

= −𝑍𝑙
𝑖𝑗.
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Then

𝚫′ = ∑
𝑖<𝑗

𝑗∈𝑁𝑖

𝐿𝑖𝑗

∑
𝑙=1

𝐔𝑙
𝑖𝑗

and also 𝔼 [𝐔𝑙
𝑖𝑗] = 0 and ∥𝐔𝑙

𝑖𝑗∥2
≤ ∥𝐔𝑙

𝑖𝑗∥𝐹
≤ √2𝐵. Since 𝐔𝑙

𝑖𝑗 are skew-symmetric and
independent matrices we have

𝜈 = max

⎧{{
⎨{{⎩

∥
∥∥∥∥
∥

𝔼
⎡
⎢⎢⎢
⎣

∑
𝑖<𝑗

𝑗∈𝑁𝑖

𝐿𝑖𝑗

∑
𝑙=1

(𝐔𝑙
𝑖𝑗)

⊤
𝐔𝑙

𝑖𝑗

⎤
⎥⎥⎥
⎦

∥
∥∥∥∥
∥2

,
∥
∥∥∥∥
∥

𝔼
⎡
⎢⎢⎢
⎣

∑
𝑖<𝑗

𝑗∈𝑁𝑖

𝐿𝑖𝑗

∑
𝑙=1

𝐔𝑙
𝑖𝑗 (𝐔𝑙

𝑖𝑗)
⊤⎤

⎥⎥⎥
⎦

∥
∥∥∥∥
∥2

⎫}}
⎬}}⎭

=
∥
∥∥∥∥
∥

∑
𝑖<𝑗

𝑗∈𝑁𝑖

𝐿𝑖𝑗

∑
𝑙=1

𝔼 [(𝐔𝑙
𝑖𝑗)

2
]
∥
∥∥∥∥
∥2

.

But the matrices (𝐔𝑙
𝑖𝑗)

2
are diagonals with only two non zero entries, which are at the

positions (𝑖, 𝑖) and (𝑗, 𝑗), and they are equal to (𝑍𝑙
𝑖𝑗)

2
. Then

𝔼 [(𝐔𝑙
𝑖𝑗)

2
]

𝑖,𝑖
= 𝔼 [(𝐔𝑙

𝑖𝑗)
2
]

𝑗,𝑗
= 𝔼 [(𝑍𝑙

𝑖𝑗)
2
] ≤ 𝐵2.

Thus ∑ 𝑖<𝑗
𝑗∈𝑁𝑖

∑𝐿𝑖𝑗
𝑙=1 𝔼 [(𝐔𝑙

𝑖𝑗)
2
] is a diagonal matrix, so

𝜈 = max
𝑘∈[𝑛]

∣
∣
∣
∣
∣
∣

⎛⎜⎜⎜⎜⎜⎜
⎝

∑
𝑖<𝑗

𝑗∈𝑁𝑖

𝐿𝑖𝑗

∑
𝑙=1

𝔼 [(𝐔𝑙
𝑖𝑗)

2
]
⎞⎟⎟⎟⎟⎟⎟
⎠𝑘𝑘

∣
∣
∣
∣
∣
∣

≤ 𝑁max𝐿max𝐵2.

Finally applying Matrix Bernstein inequality (Theorem 2.2.5) for 𝑡 = 𝐶√𝐵2𝑁max𝐿max log𝑛:

ℙ [∥𝚫′∥2 > 𝐶√𝐵2𝑁𝐿max log𝑛] ≤ 2𝑛 exp

⎧{{
⎨{{⎩

−
3 (𝐶√𝐵2𝑁max𝐿max log𝑛)

2

6𝜈 + 2√2𝐵 (𝐶√𝐵2𝑁max𝐿max log𝑛)

⎫}}
⎬}}⎭

≤ 2𝑛 exp
⎧{
⎨{⎩

−
3𝐶2𝐵2𝑁max𝐿max log𝑛

6𝑁max𝐿max𝐵2 + 2√2𝐵𝐶√𝐵2𝑁max𝐿max log𝑛

⎫}
⎬}⎭

≤ 2𝑛 exp
⎧{
⎨{⎩

−
3𝐶𝐵2𝑁max𝐿max log𝑛

6𝑁max𝐿max𝐵2 + 2√2𝐵2√𝑁max𝐿max log𝑛

⎫}
⎬}⎭

≤ 2𝑛 exp
⎧{
⎨{⎩

−
3𝐶𝑁max𝐿max log𝑛

6𝑁max𝐿max + 2√2√𝑁2
max𝐿max

⎫}
⎬}⎭

= 2𝑛 exp
⎧{
⎨{⎩

−
3𝐶𝐵2

6 + 2√2𝐵2𝐿−1/2
max

log𝑛
⎫}
⎬}⎭

≤ 2𝑛 exp
⎧{
⎨{⎩

−
3𝐶

6 + 2√2
log𝑛

⎫}
⎬}⎭
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= 2𝑛 ⋅ 𝑛
− 3𝐶

6+2√2

= 2𝑛
−( 3𝐶

6+2√2
−1)

.

But 3𝐶
6+2√2

− 1 ≥ 1, since 𝐶 ≥ 6, so with probability at least 1 − 1
poly(𝑛) we have

∥𝚫′∥2 ≤ 𝐶√𝐵2𝑁max𝐿max log𝑛.

Hence for both cases (𝑁max ≤ log𝑛 and 𝑁max ≥ log𝑛) we have that

∥𝚫′∥2 ≤ 𝐶√𝐵2𝑁max𝐿max log𝑛. (A.3)

Now by Equation (A.2) and Equation (A.3) we get

‖𝚫‖2 ≤ 2𝐶√𝐵2𝑁max𝐿max log𝑛,

with probability at least 1 − 1
poly(𝑛) . This finishes the proof.

Proposition A.1.2. Assume matrix 𝚫 as in the previous proposition and let 𝐚 ∈ ℝ𝑛
+. There

exist positive constants 𝐶, 𝑐0 such that if 𝑛 ≥ 𝑐0 log𝑛 then with probability at least 1 − 1
poly(𝑛)

it holds
∥𝐚⊤𝚫∥2 ≤ 𝐶𝜑𝐵√𝑁max𝐿max ‖𝐚‖2 , (A.4)

where 𝜑 = max𝑖𝑗
𝑎𝑖
𝑎𝑗

= 𝑎max
𝑎min

.

Proof. Recall that
Δ𝑖𝑖 = − ∑

𝑗≠𝑖
Δ𝑖𝑗 = −Δ𝑙

𝑖𝑖 − Δ𝑢
𝑖𝑖,

where Δlower
𝑖𝑖 = ∑𝑗∶𝑗<𝑖 Δ𝑖𝑗 and Δupper

𝑖𝑖 = ∑𝑗∶𝑗<𝑖 Δ𝑖𝑗. So

𝚫 = 𝚫lower + 𝚫upper + 𝚫lower
diag + 𝚫upper

diag ,

where 𝚫lower (𝚫upper respectively) is the lower (upper respectively) triangular part of 𝚫
excluding the diagonal and

𝚫lower
diag = −diag (Δlower

11 , … , Δlower
𝑛𝑛 ) and 𝚫upper

diag = −diag (Δupper
11 , … , Δupper

𝑛𝑛 ) .

Hence we get

∥𝐚⊤𝚫∥2 ≤ ∥𝐚⊤𝚫lower∥2 + ∥𝐚⊤𝚫upper∥2
+ ∥𝐚⊤𝚫lower

diag ∥
2

+ ∥𝐚⊤𝚫upper
diag ∥

2
.

Let 𝐼lower = ∥𝐚⊤𝚫lower∥2. Note that the 𝑗-th component of 𝐚⊤𝚫lower can be expressed as

[𝐚⊤𝚫lower]𝑗 = ∑
𝑖∶𝑖>𝑗

𝑎𝑖Δ𝑖𝑗.
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Let 𝑁lower
𝑗 = ∣{(𝑖, 𝑗) |𝑖 > 𝑗 and 𝑖 ∈ 𝑁𝑗}∣. Then by Hoeffding’s Inequality (Theorem 2.2.3) we

get

ℙ [∣[𝐚⊤𝚫lower]𝑗∣ > 𝑡] ≤ 2 exp

⎧{{{
⎨{{{⎩

−
2𝑡2

∑ 𝑖>𝑗
𝑖∈𝑁𝑗

∑𝐿𝑖𝑗
𝑙=1 (2𝐵 ‖𝐚‖∞)2

⎫}}}
⎬}}}⎭

≤ 2 exp
⎧{
⎨{⎩

−
2𝑡2

4𝑁lower
𝑗 𝐿max𝐵2 ‖𝐚‖2

∞

⎫}
⎬}⎭

= 2 exp
⎧{
⎨{⎩

−
𝑡2

2𝑁lower
𝑗 𝐿max𝐵2 ‖𝐚‖2

∞

⎫}
⎬}⎭

.

Hence [𝐚⊤𝚫lower]𝑗 is a sub Gaussian random variable with variance proxy

𝜎2
𝑗 = 𝑑𝑁lower

𝑗 𝐿max𝐵2 ‖𝐚‖2
∞ ≤ 𝑁max𝐿max𝐵2 ‖𝐚‖2

∞ = 𝜎2.

Note that

𝔼 [𝐼2
lower] = 𝔼 ⎡⎢

⎣

𝑛
∑
𝑗=1

[𝐚⊤𝚫lower]
2
𝑗
⎤⎥
⎦

≤ 4
𝑛

∑
𝑗=1

𝜎2
𝑗

≤ 4𝑛𝜎2

Since the entries of 𝐚⊤𝚫lower are independent, by the Hanson-Wright inequality (Corol-
lary 2.2.10) we have

ℙ [∣𝐼2
lower − 𝔼 [𝐼2

lower]∣ > 𝑡] ≤ 2 exp {−
𝑐𝑡

9𝜎2 min(
𝑡

9𝑛𝜎2 , 1)} ,

for some constant 𝑐 > 0. For 𝑡 = √81𝐶
𝑐 𝜎2√𝑛 log𝑛, for some 𝐶 ≥ 1, we have

ℙ ⎡⎢
⎣
∣𝐼2
lower − 𝔼 [𝐼2

lower]∣ > √81𝐶
𝑐 𝜎2√𝑛 log𝑛⎤⎥

⎦

≤ 2 exp
⎧{
⎨{⎩

−
𝑐√81𝐶

𝑐 𝜎2√𝑛 log𝑛
9𝜎2 min

⎛⎜⎜⎜
⎝

√81𝐶
𝑐 𝜎2√𝑛 log𝑛

9𝑛𝜎2 , 1⎞⎟⎟⎟
⎠

⎫}
⎬}⎭

If log𝑛 ≤ ( 𝑐
𝐶) 𝑛 we get

ℙ ⎡⎢
⎣
∣𝐼2
lower − 𝔼 [𝐼2

lower]∣ > √81𝐶
𝑐 𝜎2√𝑛 log𝑛⎤⎥

⎦
≤ 2𝑛−𝐶, 𝐶 ≥ 1
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So with probability at least 1 − 1
poly(𝑛) we have

𝐼2
lower ≤ 𝔼 [𝐼2

lower] + √81𝐶
𝑐 𝜎2√𝑛 log𝑛

≤ 4𝑛𝜎2 + √81𝐶
𝑐 𝜎2√𝑛 log𝑛

≤ 𝑛𝜎2 ⎛⎜⎜
⎝

4 + √81𝐶
𝑐

√ log𝑛
𝑛

⎞⎟⎟
⎠

≤ 𝑛𝜎2 (4 + 9)
= 13𝑛𝜎2

= 13𝑛𝑁max𝐿max𝐵2 ‖𝐚‖2
∞

≤ 13𝜑2𝐵2𝑁max𝐿max ‖𝐚‖2
2 ,

since ‖𝐚‖2
2 ≥ 𝑛𝑎2

min = 𝑛𝑎2
max
𝜑2 = 𝑛

𝜑2 ‖𝐚‖2
∞, where 𝜑 = 𝑎max

𝑎min
.

Working similarly for the other terms we get the desired result.

A.2 Spectral gaps

In this section we introduce the notion of spectral gap and we prove that random walks on
connected graphs have strictly positive spectral gaps.

Let 𝐀 ∈ ℝ𝑛×𝑛 be an irreducible stochastic matrix. Let

1 = 𝜆1 (𝐀) ≥ 𝜆2 (𝐀) ≥ … 𝜆𝑛 (𝐀)

be its eigenvalues in a decreasing order. By the Perron-Frobenius Theorem, the spectral
radius 𝜌 (𝐀) = max𝑖 ∣𝜆𝑖 (𝐀)∣ is equal to 1 and it corresponds to the unique eigenvalue
𝜆1 (𝐀) = 1. We denote with 𝜆max (𝐀) the second largest absolute value of eigenvalues, i.e.

𝜆max (𝐀) = max
𝑖=2,…,𝑛

∣𝜆𝑖 (𝐀)∣ = max {𝜆2 (𝐀) , −𝜆𝑛 (𝐀)} > 0.

Definition A.2.1. We denote the spectral gap of 𝐀 as

𝜉 = 𝜉 (𝐀) = 1 − 𝜆max (𝐀) .

The following proposition associate the spectral gap of random walks on graphs to the
spectral gap of the Laplacian1 of the graph.

Proposition A.2.2. Let 𝐏 = [𝑃𝑖𝑗] ∈ ℝ𝑛×𝑛 be a reversible Markov chain with stationary
distribution 𝝅 ∈ ℝ𝑛, defined on a finite set [𝑛] representing random walks on a graph
𝐺 = ([𝑛], 𝐸), i.e. 𝑃𝑖𝑗 = 0 if (𝑖, 𝑗) ∉ 𝐸. Then

1 − 𝜆max (𝐏) ≥
𝜉𝑑min

2𝑏3𝑑max
> 0,

where 𝜉 is the spectral gap of the Laplacian of the graph 𝐺 and 𝑏 = max𝑖,𝑗
𝜋𝑖
𝜋𝑗
. Moreover 𝑑max

(𝑑min respectively) is the maximum (minimum respectively) degree of the graph 𝐺.
1Note that the Laplacian 𝐋 = 𝐷−1𝐴 is a stochastic matrix.
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In order to prove the above proposition we will use the following lemma which is a special
case of a more general result from [DS93].

Lemma A.2.3 ([NOS17]: Lemma 6). Let (𝑄1, 𝜇1) and (𝑄2, 𝜇2) be reversible Markov chains
on a finite set [𝑛] representing random walks on a graph 𝐺 = ([𝑛], 𝐸), i.e. 𝑄1(𝑖, 𝑗) = 𝑄2(𝑖, 𝑗) =
0 if (𝑖, 𝑗) ∉ 𝐸. Let

𝛼 = max
(𝑖,𝑗)∈𝐸

𝜇2(𝑖)𝑄2(𝑖, 𝑗)
𝜇1(𝑖)𝑄1(𝑖, 𝑗) and 𝛽 = max

𝑖∈[𝑛]

𝜇2(𝑖)
𝜇1(𝑖) .

Then
1 − 𝜆max (𝑄2)
1 − 𝜆max (𝑄1) ≥

𝛼
𝛽.

Proof of Proposition A.2.2. Apply the previous lemma with (𝑄2, 𝜇2) = (𝐏∗, 𝝅∗) and

𝑄1(𝑖, 𝑗) =
⎧{
⎨{⎩

1
𝑑𝑖

if (𝑖, 𝑗) ∈ 𝐸
0 otherwise

.

Note that 𝑄2 is a reversible Markov chain with 𝜇1(𝑖) = 𝑑𝑖
2|𝐸| , since 𝜇1(𝑖)𝑄1(𝑖, 𝑗) = 1

2|𝐸| if
(𝑖, 𝑗) ∈ 𝐸 and 0 otherwise. Observe that 𝑄1 is actually the Laplacian of 𝐺, so 1−𝜆max (𝑄1) =
𝜉. Now we have

𝛽 = 2|𝐸|max
𝑖

𝑤𝑖
𝑑𝑖

≤
2|𝐸|𝑤max

𝑑min

≤
2𝑏|𝐸|
𝑛𝑑min

and

2𝑛𝑤2
max𝑤𝑖𝑤𝑗 ≥ 2𝑛𝑤2

max𝑤2
min

≥ 2𝑤max𝑤2
min

≥ (𝑤𝑖 + 𝑤𝑗)𝑤2
min,

so 𝜋∗(𝑖)𝑃∗
𝑖𝑗 =

𝑤𝑖𝑤𝑗

𝑑max(𝑤𝑖+𝑤𝑗)
≥ 1

2𝑛𝑏2𝑑max
. Hence

1 − 𝜆max (𝐏∗) ≥
𝜉𝑑min

2𝑏3𝑑max
,

as wanted.

A.3 Eigenvector perturbation

In this section we introduce a new matrix norm associated to a probability vector 𝝅. Using
this norm we are going to see an important result for the eigenvector perturbation for
probability transition matrices.
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Definition A.3.1. Let 𝝅 ∈ ℝ𝑛 be a strictly positive probability vector. Then we define the
inner product space indexed by 𝝅 as a vector space in ℝ𝑛 endowed with the inner product

⟨𝐱, 𝐲⟩𝝅 =
𝑛

∑
𝑖=1

𝜋𝑖𝑥𝑖𝑦𝑖.

The corresponding vector norm and the induced matrix norm are defined respectively as

‖𝐱‖𝝅 = √⟨𝐱, 𝐱⟩𝝅 = √
𝑛

∑
𝑖=1

𝜋𝑖𝑥2
𝑖 and ‖𝐀‖𝝅 = sup

‖𝐱‖=1
‖𝐱⊤𝐀‖𝝅.

Remark A.3.2. The ‖ ⋅ ‖𝝅-norm can be viewed as a generalization of the ‖ ⋅ ‖2-norm. In
particular, if 𝝅 = 1

𝑛 (1, … , 1)⊤, then

‖𝑥‖𝝅 =
‖𝑥‖2
√𝑛

.

The next proposition associates the ‖ ⋅ ‖𝝅-norm to the ‖ ⋅ ‖2-norm.

Proposition A.3.3. The following inequalities hold:

• √𝜋min‖𝐱‖2 ≤ ‖𝐱‖𝝅 ≤ √𝜋max‖𝐱‖2

• √ 𝜋min
𝜋max

‖𝐀‖2 ≤ ‖𝐀‖𝝅 ≤ √𝜋max
𝜋min

‖𝐀‖2

Now we can state the main theorem. This theorem can be a treated as the analogue of the
famous Davis-Kahan sinΘ theorem ([DK70]).

Theorem A.3.4 ([Che+19]: Theorem 8). Suppose that 𝐏, 𝐏̂, and 𝐏∗ are probability transition
matrices with stationary distributions 𝝅, 𝝅, 𝝅∗, respectively. Also, assume that 𝐏∗ represents a
reversible Markov chain. When

∥𝐏̂ − 𝐏∗∥𝝅∗ < 1 − max {𝜆2 (𝐏∗) , ∣𝜆𝑛 (𝐏∗)∣} ,

it holds that

∥𝝅 − 𝝅∥𝝅∗ ≤
∥𝝅⊤ (𝐏 − 𝐏̂)∥𝝅∗

1 − max {𝜆2 (𝐏∗) , ∣𝜆𝑛 (𝐏∗)∣} − ∥𝐏̂ − 𝐏∗∥𝝅∗

.

We include the proof for completeness.

Proof. We write

𝝅⊤ − 𝝅⊤ = 𝝅⊤𝐏 − 𝝅⊤𝐏

= 𝝅⊤ (𝐏 − 𝐏̂) + (𝝅 − 𝝅)⊤ 𝐏̂

= 𝝅⊤ (𝐏 − 𝐏̂) + (𝝅 − 𝝅)⊤ 𝐏∗ + (𝝅 − 𝝅)⊤(𝐏̂ − 𝐏∗)

= 𝝅⊤ (𝐏 − 𝐏̂) + (𝝅 − 𝝅)⊤ (𝐏∗ − 𝟏𝝅∗⊤) + (𝝅 − 𝝅)⊤ (𝐏̂ − 𝐏∗) ,

where 𝟏 ∈ ℝ𝑛×1 is the column vector whose all entries are ones and 𝝅⊤𝟏 = 1 for all
probality vectors 𝝅. Hence we get

∥𝝅 − 𝝅∥𝝅∗ ≤ ∥𝝅⊤ (𝐏 − 𝐏̂)∥𝝅∗ + ∥𝝅 − 𝝅∥𝝅∗ ∥𝐏∗ − 𝟏𝝅∗⊤∥𝝅∗ + ∥𝝅 − 𝝅∥𝝅∗ ∥𝐏̂ − 𝐏∗∥𝝅∗

Now observe that ∥𝐏∗ − 𝟏𝝅∗⊤∥𝝅∗ = max {𝜆2 (𝐏∗) , ∣𝜆𝑛 (𝐏∗)∣} and use the given condition to
finish the proof.
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For 𝐏 = 𝐏∗ in the previous theorem we get (after renaming): If ‖𝐏 − 𝐏∗‖𝝅∗ < 1 −
max {𝜆2 (𝐏∗) , ∣𝜆𝑛 (𝐏∗)∣} then

‖𝝅 − 𝝅∗‖𝝅∗ ≤
∥𝝅∗⊤ (𝐏 − 𝐏∗)∥𝝅∗

1 − max {𝜆2 (𝐏∗) , ∣𝜆𝑛 (𝐏∗)∣} − ‖𝐏 − 𝐏∗‖𝝅∗
.
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