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MEPINHWH

To epddTNRA TNG KATATAENG AVTIKEPEVWY amrd Suadikég ovykpioelg amoteAel avtikelpevo
evdlapépovtog 8w kal TOAD Katpd. AvTd TO TPOPANUA €xel TOMESG EPAPHOYES OTNY
mpaypatiky {wr, 6TWG OTA CLOTHHATA CLOTACEWY 1] 08 KATATAEELG Opddwy o ABANTIKEG
SpaotnpLotnteg. EmumAéor, o€ TOMEG ePUTTWOELG elvat Oepttd va €xovpe €va “okop” yLa
KAOe auTike(pevo €T0L MOTE VA PITOPOVHE VX KATAVOTIGOVHE KaXAUTEPA TNV “PapvTnTa” TNg
KATATAENG.

Ye vt TNV SumAwpatikn epyacia, SovAévovpe KLPIWG PE TO SNUOMPIAEG NOVTEAD TwV
Bradley-Terry-Luce (BTL) 6mov k&Be avtikeljievo €xel éva oxetikd okop mov kabopilel To
amoTéAeopa TNG CLYKPLONG oVHPWYA e pta dokipun Bernoulli. Avto elvat to Static BTL
povtého, émwg €xet meptypa@el oto [NOS17]. Ztn owéyela, mopovotdlovpe SLdpopeg
EMEKTAOELG LTOV TOVL PactkoV povtéhov. Eekwdpe pe to Dynamic BTL povtélo, 6mou
vroBétovpe dtL Ta okop e§ehlcoovTal PE TO TEPACHA TOL YPOVO. AUTO EPNPAVIOTNKE TPWTN
opd oto [KT21]. Ztnv epyacia pag, emekte(vovpe To povtélo Toug, vtobéTovTag ATt T
ypopripata cVyKpLong evat BeTikd cLoYETIOPEVA YpaPRATA cVYKPLoNG. ATtodetkvhovpe
OTL 0 ahyOpLOdg Tovg AVeL em(ong KoL AVTO TO eMEKTETANEVO PovTéLo. ‘Emetta epevvolpe
to Adversarial BTL povtého. Ze avtd To povtélo virobétovpe OTL LITdpPYeEL EVag AV TITTAAOG
(adversary) mov Aéet Péppata ylo kdsrota amd T Suadikd amotedéopata. H mpwyTn avapopd
AUTOV TOL povTélo fTaw oto [Aga+20], wotdoo mapovotdlovue éva LoYLPOTEPO Bewpnua
To omoto epmeptéyel to Static BTL povtého. Télog elodyovpe tny évvola tov Dynamic
Adversarial BTL povtélov To 07moLo yevikeVel kal evwiolel k&Oe éva ammd Ta Tponyovpeva
povtéla. Emniong ovwdvalovpe tov ahydptOpo tov dynamic povtélov pe tov alyéplOpo
Tov adversarial povtéhov wote va AdPovpe évay amodoTikd ahyoplOHo YLa TO YEVIKEVHEVO
pag povtédo.

Ae€erg KAadia

Ocwpia Md&Bnong, Ztatiotik Madnon, Katavopég Katdtagng, Movtélo BTL, ZtoyaoTikég
Atepyaoieg, Tuyaia I'papnuata, Ocwpia ITiBavotHTWY






ABSTRACT

The question of ranking items from pairwise comparisons has been a subject of interest for
a very long time. This problem has many real world applications, such as recommendation
systems or ranking teams in a sports event. Moreover, in many cases it is desirable to have
a “score” for each item in order to understand the “intensity” of the ranking.

In this thesis, we are working with the popular Bradley-Terry-Luce (BTL) model in which
each item has an associated score which determines the outcome of a pairwise comparison
according to a Bernoulli trial. This is the Static BTL model as descibed in [NOS17]. We
describe the Spectral Ranking algorithm that gives efficient estimates of the BTL scores.
Next we present possible extensions of this base model. We start with the Dynamic BTL
model where we assume that the scores are evolving over time. This was first introduced in
[KT21]. In our work we extend their model by assuming positively correlated comparison
graphs. We prove that their algorithm also solves the extended setup. Next we are exploring
the Adversarial BTL model. In this model we assume that there is an adversary that lies for
some of the pairwise outcomes. The first mention of this model was in [Aga+20], however
we present a stronger theorem which also encapsulates the Static BTL model. Finally we
introduce the Dynamic Adversarial BTL model which generilizes and unifies each one of the
previous models. We also combine the algorithm for the dynamic model and the algorithm
for the adversarial model in order to give an efficient algorithm for our most general model.

Keywords

Learning Theory, Statistical Learning, Ranking Distributions, BTL Model, Stochastic Pro-
cesses, Random Graphs, Probability Theory

iii






EYXAPIZTIEZ

Apykd, B 10eda va evyaplotriow Bepnd tov emPAémovta kaBnynT avTiig TG SLTAw-
paTikig kOpLo Anunitpn PwTdkmn, yla TNV evkaLpia oL pov €8woe Vo aoyoAnOw He To
OLYKEKPLIEVO B€par aAAd KA YLa TNV EUIVEVOT] KAL TO EVSLAPEPOY TTOV 1OV KAAALEPYT O
Katd TN SLdpkela TG ovvepyaoiag pag.

[Blaitepeg evyaplotieg Ba 10eda va amodwow otov cuvepydtn kot piho Alkn Kadafdon,
vorpto Siddktopa pe tov kOplo dwtdkn. H ovpPorr Ttov otny Siekmepaiwon Tng
epyaciag ftov kKabopLoTik.

Axona, Ba N0eda va evyaplotiiow Tov kalnynti kVpto Iayovptldn kKabwg Kot Tov
kaBnynTA kOpLo Ltdpov mov amotehovw, pali pe Tov kabnyntr kOpLto wWTdKn, TV TPLHEA
€EETAOTIKN ETMLTPOTN TNG TAPOVOAS EPYNOING.

Téhog, B 1Bl va evyapLoTriiow Ty aded@n pov, Akptfn, kabwg emiong kat Tovg yoveig
pov, Mowaytwtn kat Iwdvva, yw tn ovveyr otrplEn Kot LITOPOVT TOLG, 0L HOVO KATA TNV
EKTTOVNON TNG CLYKEKPLIEVNC SUITAWHATLKNG £pyaoiag, aAAd kot kaBOAn TN Sidpkrela TwY
TPOTTUYLANKWY KAl HETATTUYLAKDY OTOVSWY HOV.

Anpntpng Owkovédpov
ABrva, Mdaptiog 2022
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CHAPTER 1

INTRODUCTION

11 Problem Formulation and Related Work

The problem that we are dealing with in this thesis can be stated as follows: Given n items,
we want to order the items based on partial orderings provided through many samples.
Very often the available data that is presented to us is in the form of pairwise comparisons.
From such partial preferences in the form of comparisons, we frequently wish to deduce
not only the order of the underlying objects, but also the scores associated with the objects
themselves so as to deduce the intensity of the resulting preference order.

There are many real world applications where one would like to have global rankings from
such partial data:

* In rating responses of an online search engine to search queries ([Kaz11]).

* In marketing, we want to know the preferences of consumers about (many) products
([GCD81D).

* In machine learning we want to labeling data for the training of algorithms ([Hin+12],
[Ray+10], [Den+09]).

* In crowdsourcing platforms such as Amazon Mechanical Turk ([Kha+11], [LR11],
[Von+08]).

* In peer-grading in massive open online courses ([Pie+13]).
* In competitive sports such as chess or online gaming ([HMGO06], [Ros07]).

* Counting the number of malaria parasites in an image of a blood smear ([LAF12]).

Most rating based systems rely on users to provide explicit numeric scores for their interests.
While these assumptions have led to a lot of theoretical research for item recommendations
based on matrix completion ([CR09], [KMOO09], [NW12]) arguably numeric scores provided
by individual users are generally inconsistent. Furthermore, in a number of learning contexts
as illustrated above, explicit scores are not available.

Over the years, there have been proposed many distributions over ranking permutations:

1



2 Chapter 1. Introduction

* Plackett-Luce model ([Luc59], [Pla75]).
e Mallows model ([Mal57]).

* Bradley-Terry-Luce (BTL) model ([BT52], [Luc59]).

In this thesis we will focus in the BTL model. Suppose that we have n items of interest. We

assume that there is a latent weight (or score) w* = (w{, ,w;)T € R associated with
each item i € [n]. We also assume that each pair of items is being compared L times. Let
Yll.j denote the outcome of the /-th comparison of the pair i and j, such that ij =1ifjis
preferred over i and 0 otherwise. Then the BTL model assumes that

w*
Yll.‘ ~ Bernoulli | — L — |.
] w; + w]’.‘

Finally we create the comparison graph G = ([n], E), where [n] represents the n items and
i and j are compared if and only if (i,j) € E. Note that the graph G has to be assumed
connected, otherwise there would be no way to compare items that belong in different
connected components. Our aim is to estimate the BTL weights w and rank the items
accordingly.

There have been many papers that explore and try to solve the above problem. To name a
few of them:

* In [For57] they provide an analysis based on Maximum Likelihood Estimators (MLE).
* In [AS11] they give a generalized Borda Count algorithm based on [Bor84].

* In [NOS17] they present an efficient algorithm that is based on random walks on
Markov Chains. In [APA18] they modify the previous algorithm for faster convergence.

While the model we just described has many good theoretical guarantees as well as applica-
tions ([TVV04]) it can be somewhat restrictive. Hence there have been numerous tries to
extend this frame work. We will focus in the following two.

Dynamic BTL. In the dynamic setting we assume that we have a time grid Jand the BTL
weights vary over time. Hence now we have a sequence of comparison grahps {G,} instead
of just one. Our aim is that given a time instance ¢ in the time grid J, estimate the weights
w(t). This model is essentially described in [KT21]. Another model that has a dynamic
element is the one proposed by [Bon+20]. In particular, they consider the logit version of
BTL model. One more related model appears in [LW21]. This model aims at recovering a
pairwise comparison matrix X(T) at a time T from noisy linear measurements.

Adversarial BTL. In the adversarial setting we assume that there is an adversary with
complete knowledge of the BTL weights and the comparison graph and then he gives us a
corrupted version of both of them. This problem has been studied in [Aga+20]. Another
adversarial corruption model similar to the one that we have been discussing, has been
studied in the computer vision literature ([Gol+16], [HLV18]). All of these frameworks
are very closely related to robust estimation theory in classical statistics, in particular, the
e¢—contamination model of Huber ([Hub65], [Hub92]) and its generalizations ([Dia+17],
[Dia+18], [Dia+19]).
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Finally this field of research on ranking distributions has been quite popular in the National
Technical University of Athens. Many student have explored and expanded this area in
recent years. For reference we cite some those works: [Kal19], [Moul9], [Sta20] and
[Mam22].

1.2 Our Contributions
The main contributions of this thesis are the following:

1. We propose a more general dynamic BTL model. We start by introducing the notion of
positively correlated random graphs and we assume that these represent the compar-
isons graphs. We prove that the algorithm given in [KT21] works also in our setting
and we prove the corresponding theorem.

2. We modify the algorithm presented in [Aga+20] and we prove an appropriate theorem
in this setting. With our result it is clear that when we have no corruption we get the
base model and the base result.

3. Finally we propose a novel BTL setting, where we combine the dynamic setting and the
adversarial setting. This model has as special cases all the other models we will discuss.
Finally, we give an algorithm that solves the problem and we prove a generalization
of the theorem presented in the dynamic setting and the theorem presented in the
adversarial setting.

1.3 Organization of the thesis

Chapter 2: Mathematical Tools In this chapter we lay all the necessary mathematical
foundations for the following chapters. We start with a brief overview of the basic facts of
Markov chains. Next we review the basic concentration inequalities as well as others that
are based on sub Gaussian random variables. We also introduce the notion of Erd6s-Rényi
random graphs. Finally we construct a new family of such random graph, called positively
correlated random graphs, that we are using for some of the models of the following
chapters.

Chapter 3: The Static BTL Model. In this chapter we introduce the classical (static)
BTL model for global rankings from pairwise comparisons, as described in [NOS17] and
[Che+19]. We begin by formulating the problem setting and we explain the Spectral
Ranking Algorithm. Next we prove the main theorem of this framework. In the end we
verify the correctness of the algorithm with numerical experiments.'

Chapter 4: The Dynamic BTL Model In this chapter we discuss a possible generalization
of the Static BTL model. In the dynamic setting we add the element of time in our problem.
In particular, the BTL weights vary over a time grid and the comparison graphs are all
independent. Building upon the work of [KT21] we make the weaker assumption that
the graphs are positively correlated, a construction that we saw in Chapter 2. Next we
modify the Spectral Ranking algorithm into our setup and we prove the main theorem of
this framework. Finally we present novel numerical experiments.

'We follow the generation of synthetic data as in [NOS17] but we have written our own code (in Python).
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Chapter 5: The Static Adversarial BTL Model In this chapter we explore another possible
generalization of the Static BTL model. In this setting, we assume that there is an adversary
that lies about some of the outcomes of the pairwise comparisons. Based on the work of
[Aga+20], we provide an algorithm that solves the problem. Moreover, we prove a new
theorem that has as a special case the theorem from Chapter 3.

Chapter 6: The Dynamic Adversarial BTL Model In this chapter we combine the models
that we described in Chapter 4 and Chapter 5. We explain the whole framework in detail and
we combine some of the previous algorithms in order to give a novel algorithm that solves
the problem in the most general case. Finally we provide a new theorem that encapsulates
all the main theorems of the previous models as special cases.

Appendix A: Technical Tools In this chapter we present detailed proofs for the results
from the main chapters. In particular, we provide two results about the {, norms of a special
kind of random matrices and vectors. In addition, we introduce the notion of the spectral
graph and we prove a useful proposition. Finally, we define the |||, norm and using this
norm we formulate and prove the Eigenvector Perturbation theorem.

Notation
For the mathematical analysis of this thesis we are going to use the following notation.

* For any natural number n, let [n] = {1, ..., n}.

» With lower case, bold-faced letters we denote vectors, e.g. v.

» With upper case, bold-faced letters we denote matrices, e.g. A.

e With Ai]- we denote the (7,j) element of matrix A.

* We use ¢y, ¢y, k1, ky,Cq,Cs, ... to denote absolute constants.

* With |v|l, we denote the {, norm of the vector v, and with ||v|; we denote the ¢; norm.

* We use ||A|l, to denote the spectral norm of matrix A and ||A|r to denote the Frobenius
norm.



CHAPTER 2

MATHEMATICAL TOOLS

In this chapter we are going to review some basic mathematical results from probability
theory and stochastic processes as well as from random graphs theory. We are going to use
them later in many proofs.

21 Markov Chains

In this section we are going to give a brief overview of the basics of discrete time Markov
chains. We are going to use these results all the time in the subsequent chapters. The
contents of this section are based on [LP17] and [Loul5].

Definition 2.1.1. Let () be a finite state space. A sequence of random variables X, X1, ...
is a Markov chain with state space Q) if for all v, ...,v,_1,x,y € ) and all » € N we have
that

P [Xn+1 =y Xo =00, X1 =01, Xy = x] =P [Xn+1 =ylX, = x]. (2.1)

Remark 2.1.2. A Markov chain is called time-homogeneous if the right hand side of Equa-
tion (2.1) does not depend from n. This is the case for most applications. Then we can
define the probability transition matrix P as

Px,y:P[Xn+1:y|Xn:x]'

From now on when we use the term “Markov chain” we imply that it is a time homogeneous
Markov chain. Note that P is a stochastic matrix, i.e.

Y Puy=1
yeQ

Definition 2.1.3. Let () = {xy, ..., x,,}. Then the distribution at time n is given by

T[n = (nn(xl>/"' s nn(xn)) ’

where
nn(y) =P [Xn = y]

It is easy to prove that m,,; = m,P for all n € N. These are known as the Chapman-
Kolmogorov equations.



6 Chapter 2. Mathematical Tools

Definition 2.1.4. A Markov chain in a finite state space () is:

* irreducible if for any two states x, y € (), there exists a time step # such that P (x,y) >
0.

e aperiodic if, for any state x, it holds that gcd{n : P (x,x) > 0} = 1.
* ergodic if it is both irreducible and aperiodic.

Definition 2.1.5. A stationary distribution 7t € R" for a (finite) Markov chain with transition
matrix P is defined as the leading left eigenvector of P € R"*"

P = 7.
Theorem 2.1.6. An ergodic Markov chain has a unique stationary distribution.

Theorem 2.1.7. For a finite ergodic Markov we have the (entrywise) convergence

Jim 7, = .
Definition 2.1.8. A Markov chain is time reversible if there exists a distribution 7t that
satisfies the detailed balanced equations:

t(x)P(x,y) = m(y)P(y,x) for all x,y € Q).

Then 7t is the stationary distribution.

2.2 Concentration Inequalities

All of the algorithms that we are going to work with, are randomized algorithms which
means that they produce the correct result most of the time, i.e. with high probablity. In
order to analyze these algorithms we are going to need the following measure concentration
inequalities.

First we begin with the elementary Markov’s inequality.

Theorem 2.2.1 (Markov). Let X > 0 be a non negative random variable and let a > 0 be a

real number. Then we have
E[X]
P[X >a] < P

An application of Markov’s inequality is the Chernoff bound.

Theorem 2.2.2 (Chernoff). Let S,, = Z?:l X; where X4, ..., X,, are independent random
variables such that X; ~ Be (p;). Note that u = E [S,,] = Z?:l p;. Then

—]/ltz
P [|S, — pul > tu] < 2exp 3 (

forte (0,1).

A powerful and useful generalization of the Chernoff bound is Hoeffding’s inequality.
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Theorem 2.2.3 (Hoeffding, [Hoe63]). Let Xj, ..., X,, be independent random variables such
that X; € [a;,b;]. Also let S,, = 2?21 X;. Then

P[S E[S]>t]<ep{ 2 }
- <exp{—
" " ZI?:1 (bl - az)z
and
—212
P[|S, —E[S,]| >t] < 2exp{ ———
Zi:l (b; —a;)
forall t > 0.

Another generalization of the Chernoff bound as well as Hoeffding’s inequality is Bernstein’s
inequalities. It is actually a family of inequalities but here we present the following.

Theorem 2.2.4 (Bernstein, [Ber37]). Let Xy, ..., X,, € R be independent random variables,
each satisfying E [X;] = 0 and |X;| < B almost surely. Then for any t > 0
n

#[5 x> ] =2 legratore)

Furthermore, there is a generalization of the previous inequality for random matrices.

Theorem 2.2.5 (Matrix Bernstein Inequality, [Trol12]: Theorem 1.5). Let Z4,...,Z, €
R41*42 be independent random matrices, each satisfying E [Z,;] = 0 and 1Zill, < B almost

surely. Then for any t > 0
—3t?
l d1+d2)eXp{6v+2Bt}’

where v = max{||IE [ ln 1 ZZTZ']|

n

N2

=1

E[Y, ZZT]|,}-

2.21 Sub-Gaussian Random Variables

Sometimes we need more refined results about measure concentration. Thus we need to
strengthen our assumptions. One very common assumption that occurs quite naturally is to
let the random variables be sub-Gaussian.

Definition 2.2.6. A random variable X € R is said to be sub-Gaussian with variance proxy

o2 >0if
2

t
[|X|>t]<2exp(2 2) vt > 0.
In this case we write X ~ subG (02).

Sub-Gaussian random variables have “strong tail decay”. The next lemma makes this claim
precise.

Lemma 2.2.7. Let X ~ subG (¢2). Then for any positive integer p > 1 we have
p 2\P/2
EIXPP < (202)" " pI (p/2).

In particular,
(ExP)? < Jpoelle, p>2,

and E|X| < oy2r and E X? < 402
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Proof. We have
+o0
EXP = fo P [IXP > t]dt

= JO+OO]P> [IXI > t1/P] dt

2/p

+oo  Zt
<2 e 202 dt
0
+o0 tz/P
- (202)10/2pfo e tyP2 lqy oy = e
= (Zaz)p/z pl (p/2) .

The second statement follows from I (p/2) < (;9/2)"’/2 and pl/P < el/¢ for p > 2. It yields

1/ 2
((202)”/2 pl (p/2)) ' < p”*’\‘Z(TTp <elleo [p.

Moreover, for p = 1, we have \/El" (1/2) = \/ZT and forp =2itisI'(1) =1. O
The previous lemma motivates the following definition.

Definition 2.2.8. Let X be a random variable. The sub-Gaussian norm [l is defined as

”)(”4]2 = Sull)p—l/z (]E |X|P)1/p .
p=

Note that if X ~ subG (¢?), then IXlly, <30 < +co.

One of the most powerful inequalities regarding sub-Gaussian random variables is the
Hanson-Wright inequality.

Theorem 2.2.9 (Hanson-Wright, [RV13]: Theorem 1.1). Let X = (Xy,...,X,,) € R" be a
random vector with independent components X; which satisfy E [X;] = 0 and | X]| g S K, i.e.
each component X; is a sub-Gaussian random variable. Let A be a n x n matrix. Then, for
every t > 0,

t2 t
P[IXTAX —E[XTAX]| >t SZexp{—cmin( , )},

for some constant ¢ > 0.

Corollary 2.2.10. Let X = (X4, ..., X,,) € R" be a random vector with independent compo-
nents X; which satisfy E [ X;] = 0 and ||Xi||(/}2 < K. Then, for every t > 0,

-l

for some constant ¢ > 0.

t t
> t] < 2exp{—%min<m,l)},

Proof. Apply Theorem 2.2.9 with A =1,,. O]
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2.3 Erdds-Rényi Random Graphs

In all of the models that we are going to see, it will always exist a random graph. In particular,
we are going to encounter the Erdés-Rényi random graph. We start with a definition.

Definition 2.3.1 (Erdds-Rényi random graph, [FK16]: Sec 1.1). Fix 0 < p < 1. Start with
an empty graph with vertex set [#] and perform (%) Bernoulli experiments inserting edges
independently with probability p.

Notation 2.3.2. We use G ~ g(n,p) to denote that G is an Erd6s-Rényi random graph on n
vertices with probability p.

One of the most important properties of this class of random graphs is given by the following
theorem.

logn
n

Theorem 2.3.3 (Erd6s-Rényi, [ER60]). Let G ~ (;(n,p) be an Erdés-Rényi graph. Ifp > ¢
for some sufficiently large constant c > 1, then G is almost surely connected.

Another useful result that we are going to use, is the following lemma.

Lemma 2.3.4 ([KT21]: Lemma 11). Let G ~ g(n,p) be an Erdo6s-Rényi graph. Let
3
1. Al = {% < dmin < dmax < ﬂ}:
2. Az = {|El < 2n?p},
3. A, = {5 > %}, where & = ¢ (G) is the spectral gap' of the graph G.

Then there is a constant ¢ > 1 such that if p > 8" then P [A,] > 1-0 (n=10) fori =1,2,3.

n

2.31 Time dependent Erdés-Rényi graphs

In this section we are going to construct an evolution of random graphs through time.

Construction 2.3.5. Let G; ~ (1, p;) be an Erd6s-Rényi random graph. We will inductively
construct a finite sequence {G;}_; of “correlated” Erdds-Rényi graphs.

Suppose that we already have G, = ([n],E;). We construct G,,, as follows: The set of
vertices of G, is the set [n] and let a;,p;,1 € [0,1]. We call 4, the similarity coefficient
of the graph G, with respect to the graph G,. Let (i,) be a pair of vertices. We have to
decide whether this pair will be an edge in G, or not. Firstly, we look at the state of (i, )
in G, i.e. we check whether (i,j) € E, or (i,j) & E;. Then with probability «;, € [0,1] we
keep the same state in G;,; and with probability 1 — a; we change the pair’s state according
to the rule: with probability p,,,; we add the edge (i,j) € E;,; and with probability 1 —p; .,
we don’t add the edge. We do this procedure for all possible pairs of vertices. Hence we
construct a graph G, = ([n], E;1).

Remark 2.3.6. The Construction 2.3.5 is essentially the same with the construction described
in [ODo14]: Chapter 2.4.

Remark 2.3.7. The graph G, satisfies the following properties:

1See: Definition A.2.1
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1. By construction we have the Markov property:

P[@,j) € E; 1)) € Ey, ..., (4,)) € E1] = P [(,)) € E;11(G,)) € E{]
]P) [(l/]) $ Et+1|(i/j) $ Etl"'l (l/]) $ El] = ]P) [(l/]) $ Et+1|<i/j) $ Et]

2. It is easy to see that:

[(@,)) € Eyal(i,)) € E{]
[, ]) €& Epyal(,)) € Ey]
[(,]) € EpalG,)) & Ey]
[(,]) & Epal,)) & Eq]

=ap+ (1 =) prya

(1 —a;) (1 =pry1)
(1= ;) pria

=a;+ (1 —a) (1= pry)

P
P
P
P

3. Note that Gyq ~ G (n,a;p; + (1 — a;) pyy1)- Indeed

P()) € Epa] =P[G)) € E]-P[)) € Eal(i,)) € Ef]
+P[G)) €E]-P[G]) € Erali,)) & Ef]
=pr (s + A —a)pr) + (T —p) 1 —ap) pria
=apr+ (1= ) proa

4. We have the following special cases:

* If &y = 0 then Gy ~ G(n,p;;q) and the random graphs G, and G, are
independent, i.e. P [(i,j) € E;;q NE; ] =P [(,)) € E; 1] P[(,)) € E;].

* If &, = 1 then G,y = G; and obviously G, ~ G(n,p;).
The union of all the graphs G, constructed above has some interesting properties.

Proposition 2.3.8. Let {G;}_; be a finite sequence of random graphs, constructed as above.
Then the union graph G = Uthth is an Erd6s-Rényi graph with probability

T-1
p=1-(1-p1) H (1= —ay)pry1) -
t=1

Proof. We have

T T
]P[(i,j) e Et] = 1—1P’[<i,j) ¢ () Et]
t=1 t=1

T
=1-[]P[G)) &ElG,)) &Ey,, (i) & Eq]
t=1
T
=1-P[G) € B[ [P[G)) & ElG,)) & E,_q]
t=2

T
=1-(1-p) n (@1 + (1 —a;q) (1 =py))
t=2

T-1
=1-(-p) []A= T =a)pe1)- O
t=1
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Proposition 2.3.9. Let {Gt};‘r:1 be a finite sequence of random graphs, constructed as above.

Suppose that
T-1

pr+ ) (1—a;)praq = logn —log (n—clogn),
=1
for some sufficiently large constant ¢ > 1. Then the union graph G = U_, is almost surely
connected.

Proof. By Proposition 2.3.8 we have that G ~ (;(n, p) with

T
p=1-(1-pq) (1= (1 —ay)pes1) -

t

|
_

Il
iy

clogn
n

Hence by Theorem 2.3.3 it is enough to prove that p > . We have

T-1
p=1-(1-p1) l_[ (1= (1= a)pria)
t=1
e
>1- e P1 e~ U =&:)Pri1
t=1
=1— e—Pl—Zz:ll(l—“t)PHl

>1-— e—(logn—log(n—clogn))

n—clogn
n
_ clogn

- 7

n

=1—

as desired. O

2.4 Positively Correlated ErdGs-Rényi Graphs

In this section we present an interesting special case of Construction 2.3.5. We are going to
use this new concept in our models in Chapter 4 and in Chapter 6.

In this special case we assume that all the similarity coefficients a; are equal. In particular,
let {G;}1_, be a finite sequence constructed as previously, with ¢, = a forallt = 1,..., T — 1.
Then we have the following two edge cases:

* Ifa =0, then G, ~ G(n,p,) forall t = 1,..., T and moreover all the pairs G;, G;,; are
independent random graphs.

e Ifa=1,then G, =Gy ~ g(n,pl) forallt=1,...,T.
Then we have the following definition.

Definition 2.4.1. Let {G;}]_, be a finite sequence constructed as previously, with a; = &
forallt=1,...,T —1. Ifa € [0,1], then we call G/’s positively correlated random graphs.

Using the results in previous section we get the following corollary.

Corollary 2.4.2. Let {G,}]_, be a finite sequence of positively correlated random graphs. If

log n—log(n—cl . .
ZtT:1 pr > 2 Of(_na 98" then the union graph G = UL, is almost surely connected. In

log n—log(n—clogn)
1—-a)T

particular if p; > forallt =1,...,T, then G is almost surely connected.
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Proof. It follows from Proposition 2.3.9, since

T—1 T
p1+ Z (1 —a)pry1 =2 A —a) ZPt
t=1 t=1

> logn —log(n — clogn). O



CHAPTER 3

THE STATIC BTL MODEL

In this chapter we aim to formally present the basic problem setup of ranking from binary
comparisons. Furthermore, we introduce the Spectral Ranking Algorithm, an attempt at
solving the problem efficiently. Subsequently, we provide theoretical guarantees that the
algorithm works with high probability. In the end we show the effectiveness of the algorithm
through numerical experimentation.

31 Problem Setup

Preference Scores. When comparing pairs of items from 7 items of interest, represented
as [n] = {1, ...,n}, the BRADLEY-TERRY-LUCE (BTL) model assumes that there is a latent
weight (or score) w* = (w{, ,w;;)T € R associated with each item i € [n]. The outcome
of a comparison for pair of items i and j is determined only by the corresponding weights
w; and w}. We also introduce the condition number as

*
b= Wmax

*
wmin

We assume that b is a fixed constant independent of 7.

Comparison Graph. We assume that the comparisons between items are governed by a
comparison graph G = ([n], E), where [n] represents the n items of interest. The items i
and j are compared if and only if (i,j) € E. The set of edges E is taken to be a subset of
{(i,j) € [n] x[n]|i<j}. Throughout this chapter we assume that G is drawn from the
Erd6s-Rényi random graph g(n, p). Of course, the graph G has to be connected, otherwise
there would be no way to compare items that belong in different connected components.
Hence by Theorem 2.3.3, from now on we assume that p > clo$ for a sufficiently large
constant ¢ > 1.

Pairwise Comparisons. For each (i,j) € E, we assume that L independent comparisons
take place between items 7 and j. Let ij denote the outcome of the [-th comparison of the

13
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pair i and j, such that Yll.]. = 1if j is preferred over i and O otherwise. Then the BTL model
assumes that

w; + wi

wy
Yll.]. ~ Bernoulli [ ————
1 ]

Furthermore, it is assumed that the random variables Yll.]. are independent of one another
for all 4, jand I. Now lety = {yijl(i,j) € E}, where

is the fraction of wins of j over i. By convention, we set Y]l.l. =1- Yf]. for all (i,j) € E. Then
obviously y;; = 1 — y;;. In the same fashion, we denote

*
Wy

Vij =

T wr + w;
and y]f*l- =1- yl.*]. for all (i,j) € E. Now we can turn the comparison graph G into a weighted
graph by assigning the weight y;; for all (7,j) € E. Note that the weighted graph G contains
all the information of our data.

Goal. The BTL model as we have described it so far is invariant under the scaling of the
weights w*, so an n-dimensional representation of the scores is not unique. To get a unique
representation we let

w>(-

*

w*lly

The goal is to learn (or at least estimate) the normalized weight vector 7t* and then rank all
the items according to 7r*.

3.2 Spectral Ranking Algorithm

As we have already mentioned there are many approaches that attempt to solve the above
problem. Here we present one of the most recent and most powerful attempts, the Spectral
Ranking Algorithm. The idea, which shares many similarities with the PageRank Algorithm
[Pag+99], is to create a random walk on the comparison graph G and then calculate the
stationary distribution of this random process.

In particular, consider the following stochastic matrices: Let P = [Pij] € R be the
comparison transition matrix with

1
— 7y if (i,j) € Eor (j,i) €E
max 1
max xeN (i)
0 otherwise,

where d,,,,, is the maximum degree of the comparison graph G and N(i) is the set of
neighbors of the node i in G.
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Also let P* = [P;}] € R be the preference transition matrix with

1
—Vj if (i,j) € E or (j,i) € E
max
Pij=11- Vi ifi=j
max keNg (i)
0 otherwise.

Note that E [yij] = y;‘j, so by the Strong Law of Large Numbers, Yij = y;‘j almost surely
when L — oo. Similarly for the transition matrices (the convergence is entrywise) P — P*.
Moreover it is easy to see that the normalized weight vector 7r* = (7}, ..., n,’;)T e R} is
the stationary distribution of the Markov chain induced by the matrix P*, since it satisfies
the detailed balance equation 7t} Pi*]. = 7r]-*P]’.‘i for all i,j € [n]. As a result, it is reasonable to
expect that the stationary distribution of the empirical version P to form a good estimate of
7t*, provided the sample size L is sufficiently large.

This motivates the following algorithm:

Algorithm 1: Spectral Ranking Algorithm for the Static BTL Model.

Input: The comparison graph G and the statistics y.
Output: An estimate 7w € R} of the true normalized weight vector 7r*.

1 Compute the comparison transition matrix P as shown above.
2 Compute the leading left eigenvector 7t of P.

3.3 Main Result

The purpose of this section is to prove that the Spectral Ranking Algorithm actually works,
i.e. it provides a good estimate of 7t*.

logn
n

Theorem 3.3.1 ([NOS17]: Theorem 2, [Che+19]: Theorem 9). Suppose that p > k;
for a suitable constant k; > 0. Then there is a constant C; > 0 such that if

71
L3 o8 (3.1)
np

for some constant ¢y > 0, then with probability at least 1 — one has

_1
poly(n)’
9/2
It — 7T, 1 v’/
”77*”2 - ‘/an

Notation 3.3.2. Throughout this section let A = P — P*.

(3.2)

We need the following lemmas.

Lemma 3.3.3 ([NOS17]: Lemma 3). There exist a constant C; such that with probability at

least 1 — —1 one has
181, < Cpy| 28"
2= ! Ldmax

poly(n)’
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Proof. This is a direct application of Proposition A.1.1: Let L;=Land

1 I . e .
A (Yl.]. —yij) if (i,j) € Eor (j,i) € E
ij = max
0 otherwise,
where ij ~ Bernoulli (yl*]) Then B = # and N,,x = dnha.x and we get exactly what we
want. - O

Lemma 3.3.4 ([Che+19]: Section C.2). Since n > % log n we have that with probability at
least 1 — —— it holds
poly(n)

|7 T (P =P, < Cy 7Tl -

max

Proof. This is a direct application of Proposition A.1.2: Construct A as in the previous proof
and let a = 7t*. Then ¢ = b and we get exactly what we want. O

Lemma 3.3.5 ([NOS17]: Lemma 4). If

b’d
L> C32—r;E'lX logn,
min
for some sufficiently large constant C3 > 0, then with probability at least 1 — pol}ll o we have
g dmin
=1-A P*) — P - P¥|.. > ,
Y max (P*) — I e = 1°d,
where { is the spectral gap of the graph G.
Proof. By Proposition A.2.2 with (P, r) = (P*, t*), we have that
=1 Ay (PF) — [P = P[0 > -o0min _p_ ey
Y= max T = 2b3dmax 7T
But by the innitial assumption on L and Lemma 3.3.3, with probability at least 1 — pol}lf o
we have,
IP — P*Il, < VDAl
blogn
<C \’—
- ! Ldmax
g dmin
T Ab3d .
As a result,
5> gdrnin _ gdmin
203d . AD3d 0y
gdmin ]

T 4d_
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Now we have all the tools to prove the main theorem.

Proof of Theorem 3.3.1. First we assume that the comparison graph G is a general graph
(i.e. there is no randomness) and that

7

b’d
L>Cs Zdlgax log n. (3.3)
min

In this case we have:

lr — T, < 7t — 7t*|l,.~ , by Proposition A.3.3
\)n—;ﬁn
<! |~ 5] by Th A3.4
< , eorem A.3.
—— 1 —max {(A,(P*), A, (P) [} — [P — P*[.." >
min
1 4b3d
< ——2||*T (P — P*)||_,, by Lemma 3.3.5
[7-[*‘ gdmin &
min
4b7/2d
< ——2|&*T (P — P*)|, , by Proposition A.3.3
gdmin 2
4b7124 Cb
< max 7|, , by Lemma 3.3.3.
gdmin Ld
max
Hence

e — 7l _ 407 %d, . Ch
” T ”2 N édrnin Ldrnax

3.4)

Now using Lemma 2.3.4, the Equation (3.3) becomes the Equation (3.1), and the Equa-
tion (3.4) becomes the Equation (3.2). This finishes the proof. O

3.4 Numerical Experiments

In this section we are going to test how well the Spectral Ranking Algorithm works in
practise. In order to do this we are going to create synthetic data under the Static BTL
Model which we will then feed to the algorithm. In the end we are going to use error metrics
to quantify the “accuracy” of the algorithm.

Error Metrics. For the majority of this chapter we have worked with the ¢, norm. Here we
introduce another metric, which is better suited for comparing rankings. We define D as
the normalized weighted sum of pairs (i, j) whose ordering is incorrect:

1

2nli7c* |12

1/2
* +)? 1 3.5
(ni - nj) (n;*—n]’f)(nl-—nj)<0 ’ ( . )
2 i<j

D (rc*, ) = {
where 1. is an indicator function. Note that this metric is less sensitive to errors between
pairs with similar weights. Moreover, we have the following lemma which connects the
metric D (7t*, 7T) to the bound provided in Theorem 3.3.1. As a result, the same upper
bound holds for D (7t%, 7t) error.

Lemma 3.4.1 ([NOS17]: Lemma 1). Let 7t*, 7t be probability vectors. Then,
|7e* — 77,

D (rt*, ) < "
lI7e*1l
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10714

D (m, )

10724

100 10t 102 10° 10t 102
L L

(@) Error Metric: D (b) Error Metric: £,

Figure 3.1: Log-Log plots of the evolution of errors as L grows with fixed p = 5105"

L =50 L=50

D (m, )
7 =,

P P

(a) Error Metric: D (b) Error Metric: £,

Figure 3.2: Log-Log plots of the evolution of errors as p goes to 1, with fixed L = 32

Synthetic data. We generate data according to the BTL model. We follow the experimen-
tation scheme of [NOS17] but we have written our own code!. In particular, for a given n
and b > 1, the weights are constructed as follows:

iy = b@-1-m2n e ),

Obviously % <b.

We present two kinds of plots. In the first one, we let L grow while keeping constant the
lOg") in the g(n, p), for n = 100,200,400. A representative result is

probability (p = 5—
depicted in Figure 3.1.

In the second plot, we let p go to 1 while keeping constant the number of comparisons
(L = 50), for n = 100, 200,400. A representative result is depicted in Figure 3.2.
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CHAPTER 4

THE DYNAMIC BTL MODEL

In this chapter we present one possible generalization of the Static BTL setup. In this
dynamic setting we add the element of time evolution in the BTL weights. We start by
carefully introducing the model. Next we explain the Dynamic Spectral Algorithm which
attempts at solving the problem efficiently. Subsequently, we provide theoretical guarantees
that the algorithm works with high probability. In the end we show the effectiveness of the
algorithm through numerical experimentation.

41 Problem Setup

Time. The basis of this model is that the weights vary over time. We assume that we have
a time grid J which corresponds to the time evolution. In our case we assume J to be finite.
Let J ={1,...,T}.

Preference Scores. As in the static case suppose we are comparing pairs of items from n
items of interest, represented as [n] = {1, ...,n}. The Dynamic BTL model assumes that
there is a latent weight (or score) w*(t) = (wj(t), ... ,wi(t)T € R associated with each
item i € [n] for each timestamp t € J. The outcome of a comparison for a pair of items i
and j at the moment t € Jis determined only by the corresponding weights w;(t) and w;(1).
Again we introduce the condition number as

Wrnax (f)
Whin ()

b(t) :=

It is easy to see that if we let the weights vary unconditionally between each time moment
there would be no way to get good estimates since the variance could be huge. Therefore
for a meaningful recovery of w*(t), we need to make the additional assumption:

Assumption 4.1.1. There exists M > 0 such that
w]“.‘(t) ~ w]*.‘(t )
wi () +wi (D) w (#) + w(E)

<Mt -1, 4.1)

forallt,t' € Jand i+ j € [n].

19
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In words, the above assumption tell us that the weights of each item do not vary a lot
throughout the evolution of time.

Comparison Graphs. We assume that at each time moment t € Jthe comparisons between
items are governed by a comparison graph G, = ([n], E;), where [n] represents the n items
of interest. The items i and j are compared at the moment t € Jif and only if (i, j) € E;. The
sets of edges E, are assumed subsets of {(i,j) € [n] x [n] | i < j}. Throughout this chapter
we assume that the graphs {G,}L_, are positively correlated Erdés-Rényi graphs, as descibed
in Section 2.4. Note that now we are not going to assume that each comparison graph G,
is connected, as we did in the static case. Indeed, in most real world application they are
disconnected and very sparse. But we do assume that the union of all G, is connected. The
reason of this assumption will become clear later.

Pairwise Comparisons. For each (i,j) € E;, we assume that L independent comparisons
take place between items i and j at the moment t € J. Let Yll.j(t) denote the outcome of the
I-th comparison of the pairiandjatt & 7, such that Yf.].(t) = 1if j is preferred over i and 0
otherwise. Then the Dynamic BTL model assumes that

YL(t) ~B 1li o
l]< ) ~ bernoulll m

Furthermore, it is assumed that the random variables Y. (¢) are independent of one another

1
i
for all 4, j, I and t. Now let y(t) = {yij(t)l(i,j) € Et}, where

1& .,
yi(h) = Z;Yij<t>

is the fraction of wins of j over i at t € J. By convention, we set Y]Z.i(t) =1- Yll.].(t) for all
(i,j) € E;. Then obviously () = 1-— y;(). In the same fashion, we denote

w; (1)

Vi) = o ¥ i (F)

and y]f*l-(t) =1- yi*].(t) for all (7,j) € E;. Now we can turn each comparison graph G; into
a weighted graph by assigning the weight y;;(f) for all (i,j) € E,. Note that the weighted
graphs G, contain all the information of our data.

Goal. The Dynamic BTL model as we have described it so far is invariant under the scaling
of the weights w* (f) at each time t € J, so an n-dimensional representation of the scores is
not unique. To get a unique representation we let

w* (1)

™0 = o

The goal is that given a t € J, we want to learn (or at least estimate) the normalized weight
vector 7t*(t) and then rank all the items according to 7t* ().

Remark 4.1.2. Note that this model is a generalization of the model presented in Chapter 3.
Indeed, if we take G, = G and M = 0 for all t € J then we recover exactly the Static BTL
model.



4.2. Dynamic Spectral Ranking Algorithm 21

4.2 Dynamic Spectral Ranking Algorithm

We are going to generalize the Spectral Ranking Algorithm (Section 3.2) in this setting. The
first approach that one might try is that given t € J, apply the Spectral Ranking Algorithm
on G;. This could work if all of the graphs G, are connected. But as we said, we make no
such assumption. Instead, the Assumption 4.1.1 suggests that the pairwise outcomes at
close time instants are similar, so it is possible to estimate 7z () utilizing the data lying in a
neighborhood of ¢. Since we have assumed that the union of all graphs is connected, there
exists a time neighborhood such that the union of all the graphs is connected and thus we
can apply the Static Spectral Ranking Algorithm.

We are going to make everything precise. Let
Ns(t)={t=0,....t,..,t+8nT, SEN,
denote a ¢ time neighborhood around t € J. Note that 1 < [N s(H1 <26+ 1. For 6 € N, let

G! = ([n),E{) withE¢{ = |] E,,
HEN ()

be the union graph that corresponds to the time neighborhood N(#). Sometimes we will
abuse the notation and we will denote the union graph just by G = ([n], E).

Let
N;5(t) = {t' € Ns(hI(i, ) € Ep},

denote the time instances in N(t) where i and j are being compared. Then for the graph
G = G?, consider

1
Vijs(t) = o yii(t),
v INij,5 ()] t@%&(t) v

Vs = 55

Y ).
|Ni]’,5(t)|tfeNij/§(t) /

Let Ps(t) = [Py 5(t) | € R'" with

1 ~ e .y
— i 5(t) if (i,j) € Eor (j,i) € E
5, max
Pyjs(t) =31 - Jia®)  ifi=j
J,max keNg (i)
0 otherwise,

where dj 1y = g max(f) is the maximum degree of the graph G = G{.

Also let P*(#) = [P5(t) | € R’ with

1 e . ..
d—y;j(t) if (i,j) € Eor (j,i) € E
J,max
Pr(t) =41 - Z yi()  ifi=j
J,max keNg (@)
0 otherwise.
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It is easy to see that the normalized weight vector 7t* (¢) = (ni‘(t), ey n,’;(t))T € R is the
stationary distribution of the Markov chain induced by the matrix P*(¢), since it satisfies
the detailed balance equation nf(t)P;‘j(t) = n]*(t)P]’fi(t) foralli,j € [n].

Hence building upon the previous algorithm we get the following:

Algorithm 2: Spectral Ranking Algorithm for the Dynamic BTL.

Input: The time grid J, a time instance t € 7, the comparison graphs G, and the
statistics y(t') for all t' € I
Output: An estimate 7r(t) € R’} of the true normalized weight vector 7* (t).

1 Choose § € N such that the union graph G = G? is connected.
2 Compute the matrix Ps(t) as shown above.
3 Compute the leading left eigenvector 7t (t) of Ps(t).

4.3 Previous Work

The Dynamic BTL model was first introduced in [KT21]. Firstly in this paper it is assumed
that

T = {— :i:O,...,T} C[0,1].

Secondly and more crucially it is also assumed that the comparison graphs G, are all pairwise
independent in the following sense:

P[G)) € B, nE] =P[G)) € EJP[G)) € Es] = pwps.

With these extra assumptions and using the same algorithm described above, they get the
following theorem.

Theorem 4.3.1 ([KT21]: Theorem 2). Suppose that G, ~ g(n,pt,) forallt € T so that
G(g ~ g(ﬂ,p5<t)) with
pst) =1— 1_[ (1 —p),

' EN(H)
and denote ps gym = Zt,eNé(t) py. Assume that n > ¢y logn, nps(t) > cologn and ps ¢y (t) >
¢, log n for some constants cy, cq,c,. Then for constants Cq, C,, if

logn N 16Mc5n < 1
"\ Lrps(Bps sum () T = 96b77(t)
holds, we have with probability at least 1 — pol}ll(n) that
1) =7 Blly _ oo MOV b2 3
Lo T 2 Lnps()Ps,sum (1)

Remark 4.3.2. Apart from the non-essential difference in the definition of the time grid
7, our assumption that the graphs {G,} are positively correlated is more general than
the assumption of independence of the graphs {G,}. Indeed for « = 0 in our model we
immediately get the independence model.
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Moreover, we argue that our setup is a more natural setting, since usually in real life events,
such as football tournaments, the next day’s events are not entirely independent from the
previous day.

4.4 Main Result

The aim of this section is to prove that the Dynamic Spectral Ranking Algorithm actually
works in our more general setting, i.e. it provides a good estimate of 7t* ().

Recall that we have assumed that the graphs G, are positively correlated (Definition 2.4.1).
So, by Proposition 2.3.8, the graph G = G¢ is an Erdds-Rényi graph with probability

t+0

p=1-(1-pis) n (I-Q=a)py).

t=t—5+1

Theorem 4.4.1. Suppose that p > kllo% for a suitable constant k; > 0. Then there are
constants C1,C, > 0 such that if

o1
1 osh | coMon < b=7/2(t), (4.2)
Lnp
for some constants cy,c, > 0, then with probability at least 1 — m, one has
7z (t) — 7T (£l bo(t)o
<C + CoMénb?/2(t). 4.3
l7* (£l L T2 ® “3)

Remark 4.4.2. Note that if M = 0 and 6 = 1, Theorem 4.4.1 reduces to Theorem 3.3.1.

Remark 4.4.3. By Corollary 2.4.2, the condition p > cllo% is satisfied if

logn — log (n — clogn) logn
Ps sum = Z > >

FENS(B) e 1=a - - o
Moreover, the Equation (4.4) is satisfied if p,, > C%.
Let Pys(t) = [Py 5(t) ] € R’ with
1 e .
myij,é(t) if (i,j) € Eor (j,i) € E
Pyst) =11 - S e ifi=j

5, max keNg (i)
0 otherwise.

Note that E [yij,5] = y;} 5» S0 by the Strong Law of Large Numbers we have that P(t) — Ps(t)
entrywise, almost surely. Now let A = P(t) — P*(t). Then

A= (Ps(t) —Ps(t) + (Ps(t) = P*(1))
= Al + Az.

We need the following lemmas.
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Lemma 4.4.4. There exists a constant C; > 1 such that with probability at least 1 — m,
one has
N(S max log n
18411, < Cl\l—d ,
5 min“*é maxL
where

Nj§max = max |Ni]',5(t>| and Ns,min = mln ‘lef (t)|
(1 )EE(S EE‘5

Proof. This is a direct application of Proposition A.1.1: Let L; = LN;; 5 and

1
YL~y if (i,j) € Eor (j,i) € E
ij = Ld(i,rnax |Nij,5(t)‘ ( v l])
0 otherwise,
where ij ~ Bernoulli (}/Z}) Then Ly = LN mays B = W and Ny < ds max and

we get exactly what we want. O

Lemma 4.4.5 ([KT21]: Lemma 1). We have that

MOIE|
1821l < 4———.

J,max

Proof. The entries of A, = [AZ,ij] are given by

— (7 ) =y if (i,j) € Eor (j,i) € E
dé,max ‘Nij,é(t)| ( e / )
AZ,i]’ =94 — Z Az,ik lfl :]
keNg ()
0 otherwise.

By Assumption 4.1.1 for all (,j) € E or (j,i) € E we have that

1
Ay € ———— () — yi(t) (4.5)
‘ l]‘ dﬁ,max |Nij,<5(t)| t'ENZi])‘J(f) ’ |
M
LM -t (4.6)
d(S,max |Nij,(5(t)| t'€Ny; 5(1)
Mo
< . 4.7)
d&,max

Now let D be the diagonal matrix containing the elements A, ;; and D, = A, — D;. Since
D, is diagonal we have

821, < [[Dqll, + [ID1ll,
< max 1A i1 + D3Iz -

By Equation (4.7) we have that

MO |E|

J,max

IDsflp < 2
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Now, in order to bound ||D,]|, we note that

Al = ‘— Z Ao ik
k+#i
< d&,max rilillx |A2,ik|

Hence |D4 |, < Mé. As a result

2 |E|
[Doll, <Més| 1+
d&,max

MO/ |E]
<4 . O

5, max

Lemma 4.4.6. There exist constants cy, C; such that if n > ¢, logn, then with probability at

least 1 — —~— we have that
poly(n)
N maxb? ()
I ()T A, < Cpy| = IT* (Bl -
Ld&,rnaxN(S,min

Proof. This is a direct application of Proposition A.1.2: Construct A as in Lemma 4.4.4 and
leta = *(t). O

Lemma 4.4.7. If there exist constants Cq, C, such that

Né,max log n M(S|E| < gd&,min

+ =< , (4.8)
Ng,mindé,maxl‘ g dé,max 4p7/2 (t)dé,rnax

1

1

we have
poly(n)

then with probability at least 1 —

gd&min
1-A P (t)) — All,pu (4 = ———o,,
max (B (5) = Wl 2 3753 -

where ¢ is the spectral gap of the graph G.

Proof. By Proposition A.2.2 with (P, 7r) = (P* (), t*(t)), we have that

d min
1 — Apax (P*(8)) — [P (t) — P*(t)] L)

. ———— —||[Ps(t) — P*(¢t
) = Zb(t)3d5,max ” 6( : ( )”

T (t)

But by Lemma 4.4.4, Lemma 4.4.5 and Equation (4.8),with probability at least 1 — m
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we have,

[Ps(t) = P*(D)]|, < [Aqll, + 182l
< Vb(t ”Al”n— *(t) +4—

<C b(t)Ns max logn c MO |E|
- Nf%,mindé maxL 2d(5,max

MO/ |E]|

d J,max

N logn M0/ |E
<\/_(C1 N&max g +C ||)

2
5 mlndts maxL dd/max
(;I d&,min

< 0.
T 43 ()5 max

As a result,

. (f &, min gdé,rnin
1= Amax (PHED =Wl 2 5 530 "~ G033
_ _Somin -
4b(1)3ds max

Now we have all the tools to prove the main theorem.

Proof of Theorem 4.4.1. First we assume that G is a general graph (i.e. there is no random-
ness) and that
N(S,max logn n 4M(5|E| < gd&,min

C — .
' Nc%,mindé,rnaxL d&,max 4p7/2 (1) d5,max

(4.9)

In this case we have:

1
7z (t) — ()l £ ——== 7t (t) = 70*(t)ll,¢+ (s » Dy Proposition A.3.3
V Cnin (F)
.1 7o (¢
— [ 1 - max{A,(P), 1A, (P*) 1} = 1Al
1 4p3 (t)d(;,max

, by Theorem A.3.4

|7e*(5) T A

by Lemma 4.4.7

- Tt (1) gdé,min T
4b7/2(t)d
< M Hn,*(t) , by Proposition A.3.3
gdé,min z
4712 (t)d s
< S (e (T, + [ (07 )
46712 (tyd N maxb?
< (1)d 5, max 5,maxb”(£) + 1A, | lI7* (B, , by Lemma 4.4.6
gd&,min Ld&,max é,min

Hence by Lemma 4.4.5 we get

- 7/2 2
Izt (t) — 7T (t)”z < 4b (t)dé,max C Né maxb (t) 4 4M5 |E| . (4.10)
ll7T* (t) ”2 gdé,min Ld5 max 5 min d&,max
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(@) Error Metric: D (b) Error Metric: {,

Figure 4.1: Log-Log plots of the evolution of errors as L grows with fixed T = 50

Now using the results in Lemma 2.3.4 and the fact that 1 < N 1in < Ngmax < [Ns(H)] <
26 + 1 < 34, the Equation (4.9) becomes Equation (4.2), and the Equation (4.10) becomes
the Equation (4.3). This finishes the proof. O

4.5 Numerical Experinments

In this section we are going to test! how well the Dynamic Spectral Ranking Algorithm works
in practise. In order to do this we are going to create synthetic data under the Dynamic
BTL Model which we will then feed to the algorithm. For the evaluation we are going to
use the average {, norm over all time instances as well as the average metric D, defined in
Equation (3.5), over all time instances.

Synthetic Data. Let J = [T] and n € N. We define the true BTL weights as follows:
We start with a base weight vector rt* as in the static case, ie 717 =@~1="/2 for some
b > 1. Now all the true BTL weights are generated according to the normal N(7t*,1,,). For
the generation of the graphs G, they are created as independent Erd6s-Rényi graphs with

probabilities p; € [%, loﬁ” ] Then we create the statistics y(f) as defined by the Dynamic
BTL Model.

We present two sets of plots. In both of them, we let L grow while keeping the time window
constant (for T = 50 and T = 100), for n = 100,200,400. The results are depicted in
Figure 4.1 and in Figure 4.2.

IThe code is availiable at: https://github.com/dimoik96/ntua-thesis-code
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Figure 4.2: Log-Log plots of the evolution of errors as L grows with fixed T = 100



CHAPTER 5

THE STATIC ADVERSARIAL BTL MODEL

In this chapter we present another possible generalization of the Static BTL setup. In this
static adversarial setting we add an adversary that is untruthful about some of the pairwise
outcomes. We formally present the model and then we introduce the Static Adversarial
Spectral Ranking Algorithm. Furthermore, we provide theoretical guarantees that the
algorithm works with high probability.

51 Problem Setup

Consider the Static BTL Model, as presented in Chapter 3. To reiterate, suppose that we
have n items that we want to compare and that there is a latent weight w* € R’ associated
with each item. The outcome of each pairwise comparison depends only on the weights w?
and w]’f. We are also given a comparison graph G* = ([n], E*) where (i,j) € E* if and only
if the items 7 and j have been compared. This is an Erdés-Rényi random graph. Moreover,
for each (i,j) € E*, we assume that L independent comparisons take place between items i
and j. We turn the comparison graph G* into a weighted graph by assigning as weights y;;
the fraction of wins of j over i, i.e.

1& .,
Vi =1 Z Yij
=1
where

wi + wr

wy
Yf]. ~ Bernoulli (—)
1 ]

Also, as before, let
w*
j

L —
Now we consider a contamination model where an adversary has a complete knowledge
of the truthful comparison graph G*, as well as the true weights w*. This adversary can
subsequently contaminate some fraction of E* by adding new edges with arbitrary weights,
deleting and corrupting existing edges and weigths. As a result, we receive as input a
contaminated comparison graph G = ([n],E).

29
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Let E,,. = E* N E be the set of uncorrupted edges and E. = E \ E,,. be the set of corrupted
or newly added edges. Note that E; = E* \ E is the set of edges deleted by the adversary.
Then the problem can be formulated as follows: Let G* be a truthful comparison graph.
Given a corrupted comparison graph G can we estimate the true BTL weights w?

511 The contamination model for Erdés-Rényi graphs

Notation 5.1.1. Let G = (V,E) be a graph and let (S, V \ S) be a cut, with S C V. Denote
the set of edges in E that “cross” the cut (5,V \ S) by E(S). Note that if S = {u} then
E(u) := E({u}) is the set of edges in E that are incident on u, i.e. E(u) = Ng(u).

In this general setting, i.e. when there is no assumption about the nature of the corruption
of the graph G*, we have the following theorem which characterizes which corrupted graphs
can be recovered:

Theorem 5.1.2 ([Aga+20]: Theorem 1). Given any arbitrary comparison graph G = ([n], E)
as input, it is possible to uniquely identify the true weights 7t* in the limit L. — oo, if and only
if for every cut (S,V \ S) it holds

|E1c(S)I > [E.(S)].

Now we present a more specific contamination model that is more suitable for the structure
of an Erd6s-Rényi graph. Let G* = ([n],E*) ~ Q(n,p) be an Erdés-Rényi graph that

. 1
corresponds to a truthful comparison graph. Of course, we assume that p > c% because G*
has to be connected. We want to construct a contaminated version of G* given a contamination
rate vy in a canonical way.

Definition 5.1.3. Let v € [0,1) be the contamination rate. Consider the set I'(G*, )
defined as the set of all graphs G = ([n], E) such that

Yu € [n] : |[E;(u) UE.(u)] < y|E*(u)l,

where E_(u) is some subset of E(u) (this set represents the edges that have corrupted
weights) and E;(u) = E*(u) \ E(u) (this set represents the deleted edges). We refer to
I'(G*, ) as the set of all - contaminated versions of G*.

Remark 5.1.4. Note that I'(G*,) # @ for all v € [0,1), since I['(G*,y) C I'(G*,v") for
0<qy <9 <1andT(G*,0) = {G*).

Now let’s see what is the connection between the degrees of the truthful graph and the
degrees of the contaminated graph.

Lemma 5.1.5. Let G € I'(G*,y) and let d} and d; denote the degree of vertex i of graph G*
and G, respectively. Then
(1 =md; <d; < 1 +7)d;.

Hence

(1=IE*| <|EI< (1 +y)IE*|and (1 — y)d:

min < dmin < dmax < (1 + 7>dfnaX'
Proof. Fixi € [n]. Let

* a; = |E(u) \ E*(u)| be the number of new edges,
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* a, = |[E*(u) \ E(u)| be the number of deleted edges,
* a3 = |E.(u) N E*(u)| be the number of existing edges that are contaminated,

* a4 = |E*(u) \ ((E.(u) N E*(u)) U (E*(u) \ E(u)))| be the number of existing edges
that are not contaminated.

Then it is easy to see that d; = a; +as+ay,d; = a,+az+aganday +a,+az < y(ay+az+ay),
since G € I'(G*,y). Hence

di=a;+a3+a,
<ay+ap+aztay
<vy(a, +az+ay) +ay
< A+ 7))y +az +ay)
= (1+7)d;.

Similarly d; > (1 — )d;. O

Remark 5.1.6. As in the previous proof we can show that if G € I'(G*, ) then |E.(u)| <
v|E(u)| for all u.

Goal. To sum up, the problem setup is that we assume that there is a truthful comparison
Erdo6s-Rényi graph G* (which we have no access) and given a contamination rate oy we have
access to a connected y-contaminated version G. We want to estimate the normalized true
BTL weights

w*

*

Wy

Remark 5.1.7. Note that this model is a generalization of the model presented in Chapter 3.
Indeed, if we take v = 0 then I'(G*,0) = {G*}, so we recover exactly the Static BTL model.

In this contamination setting for Erdés-Rényi random graphs, Theorem 5.1.2 takes the
following form.

Theorem 5.1.8 ([Aga+20]: Theorem 2). Let ¢ > 0 and 0 < v < 1/4 — €. Then there
exists a sufficiently large constant ¢ > 1, such that if G* ~ G(n,p) with p > cbﬁ"
G € T'(G*, ) then with probability at least 1 — m,

in Theorem 5.1.2 is satisfied for every cut in G, and as a consequence, the true weights t*

are uniquely identifiable as L — oo. Conversely, if the corruption rate v > 1/4 + ¢, then with
probability at least 1 — there exists a choice of adversarial corruption such that the

and

the cut-majority condition described

1
- .. polytm? L : :
cut-majority condition described in Theorem 5.1.2 is violated for at least one cut in G, rendering
the true weights unidentifiable, even as L — oo.

5.2 Previous Work

In this section we go over some previous work on this problem. In particular, we briefly
explain the Adversarially Robust Recovery algorithm as presented in [Aga+20], that attempts
to solve the problem in hand. The basic idea is to somehow find which edges are most
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probably corrupted and remove them. Then we “hope” that the resulting graph is connected
and apply the Accelerated Spectral Ranking Algorithm ([APA18]).

Now let’s make everything prec1se Let
¢; > 0 and let G* = ([n],E*) ~ G(n,p) be an Erdos -Rényi graph that corresponds to a

. 1
truthful comparison graph. Let 0 <y < y;p =5 Olifgn: )

is a constant. Now let G € I'(G*,y) be a connected contaminated version of G. In order to
identify which edges have been corrupted we introduce the variables x(e) € [0, 1] which
indicate whether an edge is corrupted. Intuitively they can be interpreted as follows: the
higher the value of x(e) the higher the probability that e is corrupted.

be a contamination rate, where c,

Definition 5.2.1 ([Aga+20]: Definition 3). Given a (simple) cycle C = (vy,...,7v;,v;1) of
length I in G, we call C approximately consistent if

1—(21—1)€L li[yvrvm 1+€L
1+¢; _1—(21—1)£L

i=1 yvl+1 /O

where ¢; = (1 + b)ylogn/L, and inconsistent otherwise. Let C denote the set of all
inconsistent cycles in G.

Now we consider the following Linear Program (LP) which identifies corrupted edges:

min Z x(e)

eeE

subject to: Z x(e) >1, vVCeC

eeC

Y x(e) S yIE@)I < ypplEW)l, Vu € [n]
eeE(u)

0<x(e) <1, VeeeE.

Lemma 5.2.2 ([Aga+20]: Lemma 1). The above LP is solvable in O (n2+”<1)dgvg) time where
dqvg 1s the average degree of G.

Now that we “know” which edges are corrupted, we prune the given graph G according
to a solution of the above LP, as follows: Given any feasible solution x to the above LP, let
Eipr = {e € E : x(e) > log(np)/(5logn)} be the set of edges with “large” x(e) values. Then

we delete all edges in Ej,, from G, resulting in a “cleaned” comparison graph G= ([n],ﬁ )-
The pruned graph is connected with high probability, as shown by the following lemma.
Lemma 5.2.3 ([Aga+20]: Lemma 2). With probability at least 1 — m, we have that the
pruned graph G is connected and furthermore contains no edges from

logn
L, p <[

At this point, since we have a connected graph G we can apply the Accelerated Spectral
Ranking Algorithm ([APA18]). Hence we have Algorithm 3.

Ey= {(l/]) EE:|yi]~— >

_ logn
where (,,, = 4 (4 + 1og<np>> (1+Db).

This algorithm satisfies the following.
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Algorithm 3: Adversarially Robust Recover Algorithm for the Static Adversarial
BTL Model.

Input: Items [n], graph G = (V, E), parameters p, b and L.

Output: An estimate 7T € R’} of the true normalized weight vector 7T*.

1 Construct a LP as above and solve it: x « solution of LP.

2 Forall (i,]) € E, let (i, ) = Lix(i j)>lognp)/(5logn)}-

3 If X(4,j) = 1, then remove the edge (7,j) and create the graph G.

4 Return the output of Accelerated Spectral Ranking ([APA18]) algorithm on this
pruned dataset.

Theorem 5.2.4 ([Aga+20]: Theorem 3). Given an input comparison graph G = (V,E)
conforming to the contamination model described in Section 5.1.1 with Erdés-Rényi graph
parameter p > kl(;gn

for any k larger than some sufficiently large constant, true BTL weights
log(np)
125logn

recovers an estimate 7t such

7t*, and number of samples per pair L; if the corruption rate per vertex v < , then there

is an efficient algorithm that, with probability at least 1 —
that

_1
poly(n)’

1
I — 7Tty < Cb logb\’ Ofn,

5.3 Static Adversarial Spectral Ranking Algorithm

for an absolute constant C.

The main drawback in the previous algorithm is that in Theorem 5.2.4 there is no immediate
reduction of the result into the Static BTL Theorem (Theorem 3.3.1) when y = 0, as one
might would anticipate. Below we modify the previous algorithm by applying the Spectral
Ranking Algorithm (Algorithm 1) in the last step, instead of the Accelerated Spectral Ranking
Algorithm.

Recall that we have a connected pruned graph G = ([n],E). Let P = [INDij] € R™" with

1

— ¥y if (i,j) € Eor (j,i) € E
max
Pjj=141- Z Yik ifi=j
MaxX keNg(i)
0 otherwise,

where y;; are the corrupted statistics, i.e. the weights of the corrupted graph G, and
Aax = dmax (G) is the maximum degree of the graph G. Note that d,., (G) > dp. (G).

Also let P* = [INJ;-‘].] € R’ with

1 (-4 ~
7Yy if (i,j) € Eor (j,i) € E
- max 1
Pi=il-o— Y w ifi=j
max keNx(i)

0 otherwise,
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It is easy to see that the normalized weight vector 77* = 7t* is the stationary distribution of
P*, since it satisfies the detailed balance equation ﬁfP;‘]. = ﬁ].*P]T’i foralli,j € [n].

In summary, we have the following algorithm:

Algorithm 4: Spectral Ranking Algorithm for the Static Adversarial BTL Model.

Input: The corrupted comparison graph G and the corrupted statistics y.
Output: An estimate 77 € R of the true normalized weight vector 77*.

Construct a LP as above and solve it: x « solution of LP.

For all (i,j) € E, let 2(i,j) = Lixi jyzlog(np)/ (5logn)}- N
If £(i,j) = 1, then remove the edge (i,j) and create the graph G.
Compute the matrix P as shown above.

Compute its leading left eigenvector 7.

g A W N =

5.4 Main Result

Now we show that the Static Adversarial Spectral Ranking Algorithm actually works, i.e. it
provides a good estimate of 7T* = 7r*.

log(np)
logn

Theorem 5.4.1. Suppose that p > klloﬁ and y <k,
Then there are constants C;,C, > 0 such that if

for suitable constants ky,ky, > 0.

2
logn 0%
>V | oy —— ——n? .
L>b (cl (1—’)/)np+cze”’p1—'y n logn) , (5.1)

or some constants c1,c, > 0, then with probability at least 1 — one has
1,C2 p 4

_1
poly(n)’

7 -7 1o/2 2]
” _ l e + czen,pi\’w, (5.2)
172*(l, VA —7)npL I—v L

_ logn
where £, = 4 (4+ 25 ) (1+).

Remark 5.4.2. For v = 0, i.e. when we have no corruption, Theorem 5.4.1 reduces to
Theorem 3.3.1. Note that in this case G is a just a connected subgraph of G* so the basic
algorithm will still give us an estimate of the truthful BTL weights w.

The rest of the chapter is dedicated to a proof of the above theorem. Let G = G,,. U G,
where G,,. = ([n],E,,.) is the subgraph of G that contains all the uncorrupted edges of G
and G, = ([n],E,) are the rest of them, the corrupted ones. Similarly, let G = G, U G,
with G,,. = ([n],E,.) and G, = ([n], E,) be the uncorrupted and corrupted decomposition
of the pruned graph. Note that even if some corrupted edges were pruned, there is still the
possibility that there are some left. By Remark 5.1.6 we get d; (G.) < yd; and obviously
d;(G.) < d; (G,), since we are not adding any new edges. Hence d;(G.) < 7d,, $0 dpax (Go) <
Ymax-
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Let ﬁuc = [Tjuc,ij] E Rij_xl’l With
1 p . S
T Vi if (i,j) € E,.or (j,i) € E,,
max
~ 1 e
Pycij = 1_d Yik ifi=j
maX keNg (i)
0 otherwise,
and ’f’c = I:FC,Z']'] = R:l_xn with
1 R ~ .. o~
— -y if (i,j) € E. or (j, i) € E,
ma)i
Pejj=1=-7— Yooy ifi=j
MaX keNg (i)
0 otherwise.
Note that P =P, + P,.
Similarly let P*. = [?ZC,Z-]-] € R’P" with
1 . e Lo
T Y if (i,j) € E,.or (j,i) € E,.
max
~ 1 . e
Plicij = 1= Z Vi ifi=]
max keNZ (i)
0 otherwise,
and P* = [ﬁ;i].] € R™" with
1 . p C o
Y if (i,j) € E, or (j,i) € E,
mai
P: = Z yr,  ifi=j
maX keNg (i)
0 otherwise.
Note that P* = P, + P*.
Now let
A=P-P =P, -P;)+(P.—P:) =4, +A.
Then
1Al < [Auclly + 1AM, -
For the proof we need the following lemmas.
Lemma 5.4.3. There exists a constant C; > 1 such that with probability at least 1 — m,

it holds

”Aucllz < Cl

logn
dmaxL .
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Proof. Apply Proposition A.1.1 with L;; = L and

1, o .y
g | (Yy=yy) ifGpeEor(neE
ij_ max

0 otherwise,

where YZZ.]. ~ Bernoulli (y;}) Then Loy = L, B = 5 1 — and Npay = Amax(Gue) < dpax(G) <
Amax(G).

Lemma 5.4.4. It holds that
|E| |logn
A < 4 e
I, < v%mpdmﬂ\l -

Proof. The entries of A, are given by

O

1 . .. >~ .. ~
i (yi]' - y;}) if (i,j) € E. or (j,i) € E,
max
(Ac)i]' =31" Z (Ac)ik if i :j
keNg, (i)
0 otherwise.

By Lemma 5.2.3 we have that

logn -
< ﬂn,p\l S Ny

Let D be the diagonal matrix containing the elements (A.);; and D’ = A, — D. As D is
diagonal we have

Jvij — v

1A, < D> + D[l < max|(A) ] + 1D -

Let us bound ||D’[|.. We have that

1 logn
‘(Ac)q‘ < Een,p T/

SO
2|Ec| logn
D|.< —
n|u_dmgmﬁ =
< 2’y|E|€n ’logn,
- dmax /p L
since

20E| =) 4;(G.) < vd; = 2vIEl.
In order to bound ||D||,, we simply note that

|(Ac)ii| =\~

Z (Ac)ik

kEN*GVC (i)

< dmax<éc) max ‘<Ac)ij‘
j#

Ao (Ge) logn
< ¢ \‘
dmax n,p L
’ logn
< f)/en,p T :
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|E| logn 4|E| logn
Iy < (14 70 n,,\‘ el el 0

Lemma 5.4.5. Since n > 71 log n we have that with probability at least 1 — m it holds

Hence

”n—*TAucnz < ||7T*||2~

max

Proof. This is a direct application of Proposition A.1.2: Construct A as in the proof of
Lemma 5.4.3 and let a = 77* to get exactly what we want. O

Lemma 5.4.6. If there exist constants Cq, C, such that

’ logn |E| ’logn dmin

max

. s 1
then with probability at least 1 — oty e have
S 5Jmin
1= Amax(P*) = 1Al = ————,
b T,

where & is the spectral gap of the pruned graph G.

Proof. Use Proposition A.2.2 in combination with Lemma 5.4.3 and finish the proof as in
Lemma 3.3.5. O

Lemma 5.4.7 ([Aga+20]: Lemma 7). Let G be the pruned graph. Then there is a constant

. . 1
C; such that with probability at least 1 — oty One has

52C11

where & is the spectral gap of G. Moreover, there is a constant C, such that

d;
max TSC
ij€ln d

Now we have all the tools to prove the main theorem.

Proof of Theorem 5.4.1. We have

7T — 7T, < |7 — 7T*|| 7+, by Proposition A.3.3
nélin
1 I
T A by Theorem A.3.4
ﬂ;in - max( ) - ” ”7’%*
3
! % |77 T A , by Lemma 5.4.6
ﬁir’;nn dmln
7/2
< M |7 , » by Proposition A.3.3
min
4p7/24, _
< —= (|7 A, + 7 TA )

gdmin



38 Chapter 5. The Static Adversarial BTL Model

Hence by Cauchy-Schwarz, Lemma 5.4.5 and Lemma 5.4.4 we have

40724 . Cb IE| |logn ) _
( 20 il (5.4)

17T — 7T, < —= + 490, ,——
: gdmin drnaxL P dmax L

Now by Lemma 5.4.7, Lemma 2.3.4 and Lemma 5.1.5, Equation (5.3) turns into Equa-
tion (5.1) and Equation (5.4) turns into Equation (5.2), as wanted. O



CHAPTER 6

THE DYNAMIC ADVERSARIAL BTL MODEL

In this chapter we are going to unify all the BTL models that we have discussed so far. The
new model called Dynamic Adversarial BTL Model is essentially the Dynamic BTL Model
with the presence of an adversary. In particular, in this setup all of the previous models are
just a special case of this one. Then we will combine Algorithm 2 with Algorithm 4 into one
algorithm, named Dynamic Adversarial Spectral Ranking Algorithm. Moreover, we are going
to prove that our algorithm works with high probability.

6.1 Problem Setup

Consider the Dynamic BTL Model, as discussed in Chapter 4. To reiterate, suppose that we
have a time grid J and # items that we want to compare. For each time instance t € Jwe
assume that here is a latent weight w*(t) € R’ associated with each item. The outcome
of each pairwise comparison at the time ¢ depends only on the weights w} (t) and w]’f (1).
Moreover, in order to get a meaningful recovery, we make the additional assumption:

Assumption 6.1.1. There exists M > 0 such that

w? (1) w? (F)
w; (B) + wy (1) S wit) + w? (1)

<Mlt - t], (6.1)

forallt,t' € JTand i+ j € [n].

We are also given a sequence of comparison graphs G; = ([n], Ef) where (i,j) € E} if and
only if the items i and j have been compared at the time instance t € J. Furthermore, we
assume that the graphs {G;f}tT:1 are positively correlated Erdés-Rényi graphs, as descibed in
Section 2.4. We make no assumption about the connectivity of the graphs G}. Moreover,
for each (i,j) € E}, we assume that L independent comparisons take place between items i
and j at t € I. Then we turn each comparison graph G} into a weighted graph by assigning
as weights yii(£) the fraction of wins of j overiatt € 1, i.e.

1& .,
vy =7 l_Zl YL,

39
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where

YLty ~B 1li i
ij()N ernoulll Z{);(T@U}(t) .

Also, as before, let
i = wj ()
i = T W)

Adversary. Now we assume that there is an adversary having complete knowledge of all
truthful graphs G, as well as the true weights w*(¢). This adversary can subsequently
contaminate some fraction of each E} by adding new edges with arbitrary weights, deleting
and corrupting existing edges and weigths. More formally, after fixing the truthful graphs G}
the adversary chooses G; € I'(G},7;), 7;-contaminated versions of G;. Finally, we assume
that the union of all the contaminated graphs U!_, G, is connected.

Goal. The goal is that given a t € J, we want to estimate the normalized weight vector

ooy = D
o wr )l

using the corrupted comparison graphs {Gt}thl.
Remark 6.1.2. Note that this model is indeed a generalization of all the previous models.

1. If G} =G*, 9, =vyand G, = G € ['(G*,7) for all t € Jand M = 0, then we get the
Static Adversarial BTL Model, presented in Chapter 5.

2. Ify, = 0, then G, = G; for all t € J. Hence we get the Dynamic BTL Model, presented
in Chapter 4.

3. If Gf = G* and 7; = 0 then we have that G; = G*. If moreover M = 0, then we get
the Static BTL model, presented in Chapter 3.

6.2 Dynamic Adversarial Spectral Ranking Algorithm

We are going to generalize the Spectral Ranking Algorithm (Section 3.2) in this setting. The
idea is to consider the union of the graphs G; in a time neighborhood such that the union is
connected and then apply the Static Adversarial Spectral Ranking Algorithm (Algorithm 4).

Recall that Ns(t) = {t—§,...,t,... .t + 8} N I for some 6 € N. Now let G¢ = ([n],E?), where
E) = Upen sty Ev» be the union graph that corresponds to the time neighborhood Njs(¢). We
will abuse the notation and we will denote the union graph just by G. Note that the union
graph G is actually a contaminated version of G*, the union of the truthful comparison
graphs, according to the following proposition.

Proposition 6.2.1. Let G; = ([n],E}) fort =1, ..., T be a sequence of (truthful) graphs and
let G; = ([n],E;) € I'(Gf,7;) be a ;-contaminated version of Gf for allt = 1,...,T. Let
G* = ([n],E*) = UL,G; = ([n],U,E}) and G = ([n],E) = UL |G, = ([n],ULE,) be
the truthful union graph and the contaminated union graph respectively. Then G € T'(G*,y)
for v = ZtT:1 Y, or in words the union of contaminated version of truthful graphs is a
contaminated version of the union of truthful graphs.
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Proof. Since G; € I'(G}, ;) we have |E; ;(u) U E; .(u)| < 1,|Ef (u)| for all u € [n]. Now let
E.(u) = UthlEt,C(u) and note that E*(u) = UthlEg(u) and E(u) = UthlEt(u). We have

Eq(u) = E*(u) \ E(u)
T T
- (U E;(u)) \ (U Et<u>)
t=1 t=1

T
C |J Era N\ Ejw)
t=1

T
= U E; ()
t=1
Hence
T T
[Eguw) UE.)I < || Epg(u) U | Ep e ()]
t;l t=1
=1 (Era) UE, (w))]
=1
l}
<) IE;q(u) UEc(w)]
=1
tT
<) miEr )
t=1
T
< (Z fyt) |E* (u)],
t=1
as wanted. O

Recall that Nji s(t) = {t' € Ns(t)I(i,j) € Eu} is the set of the time instances in Ng(t) where
i and j are being compared. Then for the union graph G = G?, consider

1
ij,6(f) = == ii(t),
Vis® = Ny, 2 Vi)

Nij,s(t)

v s(h) =

yi(t),
Nis Ol ey !

where y;;(t') are the corrupted statistics, i.e. the weights of the corrupted graphs G,

Notation 6.2.2. At this point we fix a time instance ¢ € J. Assume that we want to estimate
the true BTL weights 7t*(f). From now on we will drop ¢ (and sometimes ¢) from the
notation in order to not obfuscate the presentation.

Now that we know that G € I'(G*,y) we can follow the procedure described in Section 5.3,
i.e. create a LP and prune from the graph G all the edges with “high” x(e). Let G = ([nl, E)
be the pruned subgraph of the union graph G. G is connected with high probability, see
Lemma 5.2.3.
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Let Pf)(; = [1’\51']‘,5] (= R’}_Xn Wlth

1

s if (i,j) € Eor (j,i) € E
d&,max
Pijs=11—- y Yike ifi=j
J,max keNg(i)
0 otherwise,

where d; ., is the maximum degree of the unpruned union graph G.

Also let P* = [13;*]] e R with

1 ~ ~
d—y;*] if (i,j) € Eor (j,i) € E
5, max 1
Py = 1=~ > vi ifi=]
J,max kEN~(i)
0 otherwise.

Observe that P* is time reversible with stationary distribution 72* = 7*, since it satisfies the
detailed balance equation 7t} P;‘j = ﬁ]?‘P]?‘i foralli,j € [n].

In summary, we have the following algorithm:

Algorithm 5: Spectral Ranking Algorithm for the Dynamic Adversarial BTL Model.

Input: The time grid J, a time instance t € J, the corrupted graphs G, and the
corrupted statistics y(¢') for all ' € I
Output: An estimate 77 € R} of the true normalized weight vector 7*.

Choose § € N such that the union graph G = G? is connected.

Construct and solve a LP with respect to G as in Section 5.3. Let x be a solution.
For all (i,j) € E, let X(i,j) = Lix(i jy=log(np)/ (5logn)}- N

If £(i,j) = 1, then remove the edge (i,j) from G and create the graph G.
Compute the matrix P; as shown above.

Compute the leading left eigenvector 7 of P;.

A A W=

6.3 Main Results

First we present a modification of Theorem 5.1.2 for our setup. This theorem gives the
optimal information theoretic bound for 7 in our setup.

Theorem 6.3.1. Let G} ~ g(n, pp) fort =1,..., T be a sequence of Erdds-Rényi that correspond
to truthful comparison graphs. Let G, € I'(G},v,), forallt = 1,...,T. Let ¢ > 0 and
suppose that ), 7 < }1 — &. Then there exists a sufficiently large constant ¢ > 1 such that
if }.,p+ = logn — log(n — clogn), then with probability at least 1 — 1/poly(n), the cut-

majority condition described in Theorem 5.1.2 is satisfied for every cut in G = U,;G,, and as a
consequence, the true weights w are uniquely identifiable as L — oo.

Proof. This follows immediately from Proposition 2.3.9, Proposition 6.2.1 and Theorem 5.1.8.
O
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Now we show that the Dynamic Adversarial Spectral Ranking Algorithm actually works, i.e.
it provides a good estimate of 77* = 7r*. Recall that G* is the truthful union graph, which is
an Erd6s-Rényi graph with probability p. Then G is the contaminated union graph, which is
a y-contaminated version of G. Finally, G is the pruned graph. The parameter p is given by

t+6
p=1-(-ps) [] Q=-a-wpy)
'=t—56+1
and the parameter 7 is given by
t4+6

Y= >
t'=t—0¢

Theorem 6.3.2. Suppose that p > kl " and vy < K 1og<np>

Then there are constants C1,C,,C3 >0 such that if

for suitable constants ky,ky, > 0.

dlogn v |n%logn .
_\‘ <b7? 2
T =i + C22n,p1 — T csMndé < b~7/%, (6.2)
for some constants ¢y, ¢y, c3 > 0, then with probability at least 1 — m, one has

I — 7l n2 logn
||7T I T )an Cot n,pl + C3M7’lb7/25 (6.3)
2

_ logn
where 4, = 4 (4 + log(np)) (1+b).

Remark 6.3.3. 1. For G = G*, 1, = 7, G, = G € I'(G*,7) and M = 0, the Theo-
rem 6.3.2 reduces to Theorem 5.4.1.

2. For v, = 0 for all t € Jwe get v = 0 so the Theorem 6.3.2 reduces to Theorem 4.4.1.

3. For G} = G* and 7, = 0, the Theorem 6.3.2 reduces to Theorem 3.3.1.

The rest of the chapter is dedicated to a proof of the above theorem. Let 'f’(g = [I%ijr(;] e R
with

1 ~ ~
— i if (i,j) € Eor (j,i) € E
R d&,max !
Pijs =11 Y yha  dfi=j
Omax  keNq(i)
0 otherwise.

As in Chapter 5 let G = G,,. U G, with G,,. = ([n],E,.) and G, = ([n],E.) and also let
G=G,.uG.with G,. = ([n],E,.) and G. = ([n],E.) be the uncorrupted and corrupted
decompositions of the union graph and the pruned union graph. By Remark 5.1.6 we get
d; (G.) < 7d; and obviously d;(G,) < d;(G,), since we are not adding any new edges.
Hence d;(G,) < vd; and d,,,(G,) < Yoy
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Let ?MC,(S = [Tjij,uc,é] e szn Wlth

1
m “Yije
Pijucs =11~ o VYiks
’ kENCMC(’)
0
and P, ; = [P 5] € R with
1
dy ma “VYije
Pijes =1~ Yik,s

Note that Ps = P, 5 + P,

~
>

Similarly, let ﬁlcl(g(t) = _l%ijluclg] e R with

1 *
“Yiie
d&,maxl g
Pz’j,uc,5 =131- y;k,é
5,max keNal,g(i)
0
al’ld ﬁc,& = [ﬁljlclé] E RZL_XH Wlth
1 *
“VYiis
d&,meix v
Pi]',cxs = ] Z yfk,5
OmaX keNg (i)

0

Note that f’(g(t) = 'f’uclé + f’c,s-
Let

For the proof we need the following lemmas.

Lemma 6.3.4. There exists a constant C; > 1 such that with probability at least 1 —

it holds
1841, < C4

J,min

if (i,j) € E,c or (j,i) € E¢
ifi=j

otherwise,

if (i,j) € E. or (j,i) € E,
if i =

otherwise.

if (i,j) € E,c or (j,i) € E,¢
if i = j

otherwise,
if (i,j) € E. or (j,i) € E.

ifi=j

otherwise.

_1
poly(n)’

N J,max log n

d&,maxL .
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Proof. Apply Proposition A.1.1 with L;; = LN;; 5 and
1 ~ ~
— (YL -y if (i,j) € E,c or (j,i) € E,,;
2= | ol 1)

0 otherwise,

. % 1
where Yll.]. ~ Bernoulli (%’j>~ Then Loy = LN max, B = s~ and

Nyax = dmax(éuc) < dmax(é) < diax (G). O

Lemma 6.3.5. It holds that
|E] logn

||A2||2 < 4- n, pd

J,max L

Proof. The entries of A, are given by

. (yi]',zS(t) —y;.*].,(s(t)> if (i,j) € E. or (j,i) € E.

d&,max

A)g=1— ), Doa ifi=j
kENGCO)
0 otherwise.

By Lemma 5.2.3 we have that

1
o |S— i~ Y
Yij,o — Yijs |Nij,<$| t';Mj,5|yl]

logn
S P'l/l,p T/

for all (4,)) € EC. Let D be the diagonal matrix containing the elements (A,);; and D’ =

A, — D. As D is diagonal we have
821l < DIy + [D'[l, < max|(Az) ] + 1D’

Let us bound ||D’||. We have that

SO

, llogn 2 |E| logn
”D ”F — d ,p d5 maxﬂn’p T/

since 2 |E | =>d,; ( ) <Y yd; = 27|E| In order to bound ||D||,, we simply note that

Y. M)

keNg_ (i)

< i (Ge) max| (42,

< dmax (GC)Q logn

N dé,max P L
logn

< yen,p\’ —

[(A) il = |
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Hence

2 |E| logn 4|E|

ol < (14 7 ) oty | < AEL

5 max J,max

Lemma 6.3.6. It holds that
MY |E|
183, < 4——.
Jd,max

Proof. It is the same proof as in Lemma 4.4.5.

Lemma 6.3.7. Since n > %logn we have that with probability at least 1 — Doty ()

N
|72 T A |, < Cby| 22— |7 .
Ld5maX §,min

logn
,p\’ T O

1 .
) it holds

Proof. This is a direct application of Proposition A.1.2: Construct A as in the proof of

Lemma 6.3.4 and let a = 7T* to get exactly what we want. O
Lemma 6.3.8. If there exist constants C,,C,, C3 such that

N, logn E logn MOJI|E /-

N(S,mind5,maXL d&,max L dé,rnax 4b7/2dmax

; . 1
then with probability at least 1 — olyan e have
%S gjmin
1 _/\max(P*) - “A”"’* 2 A T/
T,

where & is the spectral gap of the pruned graph G.

Proof. Use Proposition A.2.2 in combination with Lemma 6.3.4 and finish the proof as in

Lemma 4.4.7.
Now we have all the tools to prove the main theorem.

Proof of Theorem 6.3.2. We have

O]

|7 — 7T, < |7€ — 7| . , by Proposition A.3.3
Ttrtlin
1 Iz
, by Theorem A.3.4
ﬁ;in 1- Amax ( ) - ”A”ﬁ*
1 4b%d,
20" Ao |77 TA||.... , by Lemma 5.4.6
ﬁ;lll’l dmm
4b7124
< —=|7 , » by Proposition A.3.3
min

- 407 1%d, 0
gdmin

(7 T Al + 172 T 8o ], + |77 Al )
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Hence by Cauchy-Schwarz, Lemma 6.3.5, Lemma 6.3.6 and Lemma 6.3.7 we have

b7/2d !1 S MOIE
”ﬁ;_ rﬁ*”z < __Tmax = “max (5max +47€np Ong |E| |~>(-||2.
mln Ld& max 5 min sz max Td5 max

(6.5)
Now by Lemma 5.4.7, Lemma 2.3.4, Lemma 5.1.5 and the fact that 1 < N 1ip < Nj max <
INs(t)| <26 + 1 < 36, Equation (6.4) turns into Equation (6.2) and Equation (6.5) turns
into Equation (6.3), as wanted. O







CHAPTER 7

CONCLUSION

IA

Summary

In this thesis we gave an overview of the most recent results in the theory of ranking
distribution. In particular, we presented the Static, Dynamic and Adversarial BTL models
and we gave algorithms that solve each problem efficiently. Moreover, we proposed a more
general, unified model, the Dynamic Adversarial BTL model, where each of the previous
models is just a special case of our setup. Finally, we provided an algorithm that solves the
most general problem and we proved that it works with high probability.

7.2

Future Work

Here are a few questions that have arisen during the writing of this thesis.

The Theorem 5.4.1 makes the “unnatural” assumption that v < y;p = O (k)lifgn: : )

But from Theorem 5.1.8 we know that the maximum vy is 1/4. Why do we have this
gap? Can we improve it?

Can we extend our results to other models other than the BTL Model? Another popular
ranking model is the Mallows Model ([Mal57]).

Another possible question to examine is whether we can use a different kind of
random graphs. In this thesis we worked only with Erd6s-Rényi graphs. However,
there are many more kinds of random graphs, such as the Barabasi—Albert Model,
the Bianconi-Barabasi Model, the Random Geometric Graph (RGG) and the Random
Exponential Graph (REG).

Throught our work in the dynamic setting we have only worked with discrete time
grids. Can we generalize our results using a continuous time grid such as T = [0, 1]?

Another interesting direction is to examine other kinds of adversarial corruption.

49






APPENDIX A

TECHNICAL TOOLS

In this chapter we give detailed proofs of some technical results that we repeatedly use in
the main chapters.

A1 Results about a special kind of random matrices

Proposition A.1.1. Letn > 1and L;; € N foralli < j € [n]. Let A = [Ai]-] € R™" pe a
matrix defined by

Ly
Zzgj ifi<j

=1
i == ifi>j
_ZAik fi=j

=

where ZE.]. are random variables such that:

. Zﬁ.]. are independent for all i, 7, 1.

- E[Zy] =0
* |zl <B.
Then there exists a constant C > 12 such that with probability at least 1 — —poli(m’ it holds
1Al < CyB2NiaxLimax log 1, (A1)

where
Ni = {] € [n] \ {i} | Aij F 0}: Nmax = mlaX |Nz| and Lmax = H}E}XLij'

Proof. Let D = diag{Aqy,...,A,,} be the diagonal matrix with entries the main diagonal
of Aand let A" = A—D. Then A = D + A, so |All, < DI, + IA’ll,. Note that A" is

skew-symmetric. We will bound both |[D||, and [|A", by C \/ B2N paxLmax l0g 7.

51
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Bounding IDI,: Since D is diagonal we have ||D||, = max; |A;;|, and moreover by definition

itisA;; == keN, ZZL:"kl Zi.k. Hence by Hoeffding’s inequality (Theorem 2.2.3) we get
P[|A;] > t] <2exp 26 }
ii = 2€XpHy— L
Yen, Lty (2B)°
2 }
=2expl{—————
2B2 ZkeNl, Lik
t2
< 2exp ——} .
2B2NmaXLmax

Then fort = C \/ B2N paxLmax 10g 1 we have:

P [|Aii| > Cy/B2NLy.x logn] <2n=C*2,

Now using the union bound and the above inequality we get:

n

P [||D||2 > Cy/B2NLpya log n] < Z P [lAiil > CyB2NLp, log n]

i=1
<n-2n=C/2
— 2n‘<c2/2‘1).

Since C2/2 — 1 > 1 we have that with probability at least 1 — pobll o it holds

IDll, < Cy/B2NL . logn. (A.2)

Thus we have the wanted bound for ||Dl,.

Bounding ||A’|,: We will discriminate two cases. Firstly, assume that Ny, < logn.

Recall the following standard inequality

1A, < VIAI; 1A = 1A,

since A’ is skew-symmetric. Let

Ly
D7

=1

Ri=) 8= )

j#i jeN;

be the absolute row sum of the A’. Then by definition ||A’|| . = max; R;. Moreover let
S = {(pl, -, PN)IPj E {—1,1}}. Obviously |5;| = 2INil Now using the union bound and
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Hoeffding’s inequality (Theorem 2.2.3) we have

L;
D 0 Zi>t
=1

JEN; I=

<) exp {— 2 }

Ly

Yjen, Lith 2B)?
t2

< exp{—————

= Z Xp{ 2BZNmameax}

N £
=2Nilexp{ —————
p { 2B2NmaXLmaX }

PR, >t]< ) P

tZ
<ex N 10 2——+°.
N p { e g 2B2Nmameax }

Setting t = %\/Bszameax (logn + Nphax l0g2) in the above we get

C
P [Ri > VB?NaxLimax (108 11 + Nipay log 2)]

C?/4B?N, .« L 1 N._. log?2
< exp {Nmax log2 — / maxLmax (1087 + N,y log )}

ZBszaXLmaX
C? (logn + Npax log2) }
8

= exp {Nmax log2 —
— 1~ C?/89Nmax(1-C?/8)

<n=C*/8,

since C > 2+/2. Finally, by the union bound and the previous inequality we have

C
P [||A’||OO > E\/BZNLmaX (logn + Nlog?2) | < n-n=C*/8 = y=(C?/8-1)

Hence with probability at least 1 — we have

_1
poly(n)

1Al < 14"

C
<3 VB?NpaxLimax (logn + Nlog2)

C
<5 \/BZmeLmlX (logn + lognlog?2)

< CyB2N paxLina log 1,
as wanted.

Now assume that N, > logn. For each i < j withj € N,, let Ufj € R™" with all entries
equal to 0 except for
1\ _ 7l 1Y — _7l
(Uij)ij = Zl.]. and (Uif)ji = —Zl.]..
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Then L
ij
a=) .U
i< =1
JEN;
and also E [Ugj] = 0 and HUfsz < ||U§j||F < \/EB. Since Uf.j are skew-symmetric and

independent matrices we have

L, Ly
v = max{||E Z ZJ‘(U%)TUZ AE Z Z/,Ufj (Ugj)T

i<j 1=1 i<j 1=1
JEN; 2 JEN; 2
L.
ij
2
— 1
=12 ZE[(UiJ‘) ]
i<y I=1
jEN; 2

. 2 . . . .
But the matrices (Uf].) are diagonals with only two non zero entries, which are at the

positions (i,i) and (j,j), and they are equal to (Zf.].)z. Then
E|(u)’] =E|(u)’| =E|(z)"]|<p

i,i
Lij 1 27 . . .
Thus ). i<; 2, E (Ul.].) is a diagonal matrix, so
JEN;

I

L; )
o= | 2 L] ] | Nowtet?

JEN; Kk

Finally applying Matrix Bernstein inequality (Theorem 2.2.5) for t = C\/ BN axLmax 10g 1

2
3 (C\/ BN paxLmax 108 n)
P [||A’||2 > CyB2NLy.x logn] < 2nexp]|—
6v + 228 (C\/ B2N axLomax 108 n)
<2nexpq-— 3CZBZI\]InaXLmaX 103 n }
62\]rnax].-'maxB2 + ZﬁBC\/Bszameax log n
<2nexpq-— 3CBernaernax 108 n }
6N maxLmaxB? + 22B2\N maxLmax 108 71
< 2nexpq-— 3CNmaxLmax logn }
6N, rnameax + 2\/5 ernameax
{ 3CB2 }
=2nexp{— log n
6 + 2V2B2L /2

3C
<2nexp{-— logn
6 +2v2
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__3c_
=2n.-n 6+2V2

— 2n_(6+32C\/5_1>_

3C

But — 1> 1, since C > 6, so with probability at least 1 — —L— we have
6+2v2 poly(n)
1A', < CYB2NpmaxLmax log n.
Hence for both cases (N,.x < logn and N,,,, > logn) we have that
1]l < CyB2NpaxLmax l0g 1. (A.3)
Now by Equation (A.2) and Equation (A.3) we get
1Al < 2CyB2N maxLmax log 7,
with probability at least 1 — —L—. This finishes the proof. O

poly(n)

Proposition A.1.2. Assume matrix A as in the previous proposition and let a € R’. There
exist positive constants C, ¢y such that if n > ¢y logn then with probability at least 1 — pol}ll o
it holds

aTA|, < CoBYNmaxLmax lall , (A.4)

X a; _ Amax

where ¢ = max;; &=

Proof. Recall that
Aii = — ZAZJ = _Agl - Au

(14

JFL
lower _ upper _
where AW = Z]-:]-<,- A and A, = Zj:j<iAij' So
_ lower upper
A= Alower + Aupper + Adiag + Adiag 4

where Ajgyer (Aypper TeSPectively) is the lower (upper respectively) triangular part of A
excluding the diagonal and

A}ﬁ‘;"ger = —diag (AlG"e, ..., Algver) and Agf;’ger = —diag (ATYP, ..., AP .

Hence we get

78, < a7 Bl + a7 Bugpe, + a6

diag

T Aupper
5 + ”a A diag

" R

Let Ligwer = [|a” Ajower|l,- Note that the j-th component of a” A, can be expressed as

[aTAlower]]- = Z aiAij'

i:i>f
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Let N}O""er = |{(i, j)li>jandie Nj}|. Then by Hoeffding’s Inequality (Theorem 2.2.3) we
get

212
L;:
Y s 20 (2Blally)?

1EN]

<2ex 2r?
- p 4N]1oweeraXB2 ”a”i

tZ
=2exp{— .
2N]l_oweeraXB2 ||a||§o

P H[a Alower] > t] <2expy-—

Hence [aTAlower]]. is a sub Gaussian random variable with variance proxy
2
07 = ANI"Lina B llal3, < NayLmaxB? lall3, = 0.

Note that

Since the entries of a’ Ay, are independent, by the Hanson-Wright inequality (Corol-
lary 2.2.10) we have

P (s = B[R > 1] < 2059 { oz min (1)
OWGI’ ower 90.2 97’10’2

for some constant ¢ > 0. For t = ﬁ%az\/nlog n, for some C > 1, we have

’81C

| lower — [ lower]' > c anogn]

81C0 nlogn . ( 81C 52 fnlogn 1)}
min ,

<2
= £€xp { o2

If logn < (%) n we get

81C
P 1~ E [l > {2 Wogn}szn—c,m



A.2. Spectral gaps 57

1
poly(n)

81C
Ilzower <E [Ilzower] + 70'2 anogn
81C
< 4no? + TUZ‘/nlogn

< no? (4+ \’%\‘logn)
c n

<no?4+9)

= 13n0?

= 131N,y Loy B2 2l
< 13¢2B2N paxLinay 213,

So with probability at least 1 — we have

2
3 2 a n 2 a
since [lall3 > nay;, = n=% = Z alZ,, where ¢ = 2=,
Working similarly for the other terms we get the desired result. ]

A.2 Spectral gaps

In this section we introduce the notion of spectral gap and we prove that random walks on
connected graphs have strictly positive spectral gaps.

Let A € R™" be an irreducible stochastic matrix. Let
1=A;(A) >, (A) >...1, (A)

be its eigenvalues in a decreasing order. By the Perron-Frobenius Theorem, the spectral
radius p (A) = max;|A; (A)| is equal to 1 and it corresponds to the unique eigenvalue
A1 (A) = 1. We denote with A, (A) the second largest absolute value of eigenvalues, i.e.

.....

Definition A.2.1. We denote the spectral gap of A as
ér = g(A) =1 _)‘max (A).

The following proposition associate the spectral gap of random walks on graphs to the
spectral gap of the Laplacian® of the graph.

Proposition A.2.2. Let P = |P;;| € R be a reversible Markov chain with stationary
distribution t € R", defined on a finite set [n] representing random walks on a graph
G = ([n],E), i.e. P;=0 if (i,j) & E. Then

gdmin
2b3d oy

1= Ay (P) > >0,

where ¢ is the spectral gap of the Laplacian of the graph G and b = max; ; %’ Moreover d .,

(d i, Tespectively) is the maximum (minimum respectively) degree of the graph G.

!Note that the Laplacian L = D~'A is a stochastic matrix.
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In order to prove the above proposition we will use the following lemma which is a special
case of a more general result from [DS93].

Lemma A.2.3 ([NOS17]: Lemma 6). Let (Qq, 1) and (Q,, t5) be reversible Markov chains
on a finite set [n] representing random walks on a graph G = ([n],E), i.e. Q1(i,j) = Q>(i,j) =
01if (i,j) & E. Let
ﬂz(”Qz(@j) Uo (1)
= max ———— d = max ——.
(,)€EE py (1)Q1 (i, ]) o ietn) pq (1)
Then
1 _)Lmax (Q2) > E
1 _Amax (Ql) B ﬂ

Proof of Proposition A.2.2. Apply the previous lemma with (Q,, #,) = (P*, 7*) and
1 P

.. q. if (lr ) €E

Q1 (i, ) = {df J

0 otherwise

Note that Q, is a reversible Markov chain with p4 (i) = %, since uq(1)Q1(i,j) = ﬁ if
(i,j) € E and 0 otherwise. Observe that Q; is actually the Laplacian of G, so 1 —A,;,, (Q1) =
¢. Now we have

on
=2|E -
p = 2EImax

2|E|Wmax
- drnin

2b|E|
<
ndmin

and

2

2 2
2NWiyaxW;W) 2 2NWinax Wiy

2

2 2WinaxWinin

2

2 (W; + W))Wy,

w;w; 1

Amax(Wi+w;) = 2nb2d;,y

SO n*(i)ij = . Hence

gdmin
203d 0

1 — Apax (P*) >

as wanted. O

A.3 Eigenvector perturbation

In this section we introduce a new matrix norm associated to a probability vector 7r. Using
this norm we are going to see an important result for the eigenvector perturbation for
probability transition matrices.
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Definition A.3.1. Let ;t € R" be a strictly positive probability vector. Then we define the
inner product space indexed by 7t as a vector space in R” endowed with the inner product

n
XY= ) XY
i=1

The corresponding vector norm and the induced matrix norm are defined respectively as
Xlle = VOO X) 7 = Z mix? and Al = sup X" Al
Ixll=1

Remark A.3.2. The | - |,,-norm can be viewed as a generalization of the || - ||,-norm. In
particular, if 7t = % 1,...,1)7, then

Il _ lxllz
Jin

The next proposition associates the || - || .-norm to the || - |l,-norm.

Proposition A.3.3. The following inequalities hold:
* VminlXllz < Xl < 7TmaxlXll2

TUmin 7Tmax
* AL < Al <y 7o l1All
Now we can state the main theorem. This theorem can be a treated as the analogue of the
famous Davis-Kahan sin © theorem ([DK70]).

Theorem A.3.4 ([Che+19]: Theorem 8). Suppose that P, P, and P* are probability transition
matrices with stationary distributions 7T, 7T, 7t*, respectively. Also, assume that P* represents a
reversible Markov chain. When

[P —P|_,
7T

< 1—max{A, (P*),|A, (P)]},

it holds that . ~
=" (P-P)| .

1—max{)\2 P, A, PH[} =P - P*|

7w = 72|

*

We include the proof for completeness.

Proof. We write

T—7#"=n"P-7"P

=T (P-P)+(m—7)"P

=T (P-P)+ (m—7) P+ (m—7)T(P—P)
TP-P)+(r—-7) (P =1m*T) + (m—7) (P-P*),

T

where 1 € R"*! is the column vector whose all entries are ones and 7’1 = 1 for all
probality vectors 7t. Hence we get

+ |t — 7. ||P I

I — &, <[ (P—-P)|.. =7

T

Now observe that |[P* — 17r*T||7r* = max {A, (P*),|A,, (P*)|} and use the given condition to
finish the proof. O
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For P = P* in the previous theorem we get (after renaming): If [P —P*|| .. < 1 —
max {A, (P*),|A,, (P*)|} then

I < =" ® =B
7T_ 7-[ * 2 .
T 1—max{/\2 (P*),|/\n (P")|}—||P—P"||7.L,,e
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